• Title/Summary/Keyword: 잔류 농도

Search Result 1,153, Processing Time 0.029 seconds

Muscle Tissue Distribution Level of Amoxicillin in Olive Flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red Sea Bream (Pagrus major) Following Oral Administration (Amoxacillin의 경구투여에 따른 양식 어류(넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화)

  • Chung, Hee-Sik;Kim, Suk;Min, Won-Gi;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.244-249
    • /
    • 2006
  • The residue depletion of amoxicillin was investigated in the olive flounder (Paralichthys olivaceus), rockfish (Sebastes schlegeli), and red sea bream (Pagrus major) after 7 days treatment with medicated feed at a dose of 400 mg/kg bw/day. Fishes were sampled for muscle on 1st, 2nd, 3rd, 4th, and 5th day after treatment. Amoxicillin concentrations were determined by high performance liquid chromatography with fluorescence detector. The recovery rates of amoxicillin in muscle samples ranged 84.3-101.3% and 75.0-91.5% for the concentration of 0.05 mg/kg and 0.1 mg/kg, respectively. Amoxicillin concentrations detected on 1st day after treatment were 0.137, 0.131, and 0.172 mg/kg in the muscle of olive flounder, rockfish, and red sea bream, respectively. After a withdrawal of 3 days, muscle concentrations were 0.012, 0.010, and 0.017 mg/kg in the olive flounder, rockfish, and red sea bream, respectively. Amoxicillin was not detectable in muscle samples on 4 days following withdrawal of the medicated feed. From results of the present study, a withdrawal period of amoxicillin is proposed on 4 days after 7 days treatment with medicated feed at a dose of 400 mg/kg bw/day to avoid the presence of excessive residues of the edible muscles of olive flounder, rockfish, and red sea bream.

사중극 질량 분석기[QMS]를 이용한 미세 농도의 수소기체 분석

  • Im, Han-Na;Kim, Jin-Tae;Jeong, Su-Hwan;Gang, Sang-U;Yun, Ju-Yeong;Sin, Yong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.331-331
    • /
    • 2010
  • 반도체 제조, 디스플레이 산업 등의 진공공정에서 잔류기체의 종류와 양에 대한 관심이 높아지면서 사용이 쉽고 높은 정확도를 가지는 사중극 질량 분석기(QMS)가 널리 쓰이고 있다. 특히 고진공으로 내려가면서 리크디텍션(leak detection)과 미세량의 잔류기체 감지가 더욱더 요구된다. 그중에서도 진공공정에서의 수소 가스를 감지하는 것은 매우 중요하므로 $H_2$/Ar 혼합가스를 이용하여 미세농도의 수소를 측정하였다. 측정하려는 가스를 부피확장 방법으로 가스챔버로 희석하여 이동시키고 핀홀에서 가스유량을 더 줄여서 QMS가 기체를 감지하는 압력범위를 유지하면서 측정하였다. 미세량의 수소기체를 감지하기 위해 이온소스의 emission current, Ion ref. voltage, cathode voltage의 변수를 조절하여 QMS를 최적화 하였으며, 그 결과 수십 ppm 농도까지 측정이 가능하다.

  • PDF

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process (정수장 잔류염소 일정제어를 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

Magnetism of Ferric Iron Oxide and Its Significance in Martian Lithosphere (화성 암권의 진화해석을 위한 예비연구: 3가철 산화물의 자화특성)

  • Jeong, Doo-Hee;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.189-194
    • /
    • 2011
  • Martian satellite missions indicate that Martian equatorial plains are covered by ferric iron oxide. As a non-destructive technique, low-temperature treatment of remanent magnetization is effective in identifying magnetic minerals in rocks. In the present study, four sets of ferric iron oxides were prepared by aqueous alteration of ferrihydrite at warm conditions and four others by dehydration of goethite. As the amount of aluminous trivalent cations increases, crystallographic lattice parameters and N$\acute{e}$el temperatures decrease. Such declines originate from lattice distortion as the smaller aluminous trivalent cations substitue the larger terric irons. Whilst high remanence memory was observed for aqueously produced ferric iron oxide, low remanence memory was observed for dehydrated ferric iron oxide. In the future. magnetic remanence memory would be powerful in diagnosing the origin of ferric iron oxide.

Oxolinic acid Residue in the cultured Eel Tissues and its Change to Heating Process (시판중인 뱀장어중의 Oxolinic acid 잔류량과 가열에 의한 변화)

  • 김경호;송미란;최선남;최민순;박관하
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.14-19
    • /
    • 1998
  • The residual tissue concentraion of the widely used aquatic antibacterial agent, oxolinic acid, was surveyed in eels collected from fish markets of Chonbuk Province, Korea. Their concentrations in the dorsolateral muscle were widely varying. In about 32% of samples examined, oxolinic acid was not detected. In about 16% of those samples in which oxolinic acid was detected, the concentration was above 0.1 ppm. The tissue distrubution of the agent in major organs was in the rank order of kidney>liver>plasma>muscle. When the muscle samples which contained residual oxolinic acid were baked for up to 10 min, there was no change in the drug concentration. Their concentration declined to about 50% by baking for 30 min at which time the tissue turned to the texture of charcoal. The extreme stability of oxolinic acid to heating process was confirmed with muscle samples from eels to which a high dose of oxolinic acid was administered, and also with an aqueous oxolinic acid solution of known concentration. It is suggested that an effective regulatory measure should be initiated to keep eel consumers from residual oxolinic acid impact.

  • PDF

Leaching and Adsorption of Flupyrazofos(KH-502) in the Soil (Flupyrazofos(KH-502)의 토양 중 용탈 및 흡착)

  • Yang, Jae-E;Cho, Boo-Yeon;You, Kyoung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Adsorption, leaching, and retention of the Flupyrazofos(KH-502), a new active ingredient for insecticide, in the soils under laborarory and field conditions were investigated to provide the basic data for the safety use and to assess a secondary impact of this insecticide on soil and water environments. A significant power function relation was found between the adsorbed KH-502 and time, representing that 45% of the added KH-502 was adsorbed within 30 min. but a quasiequilibrium was reached after 6 to 12 hr with a slower adsorption. Adsorption phenomena followed th first-order kinetics and time required for 50% adsorption was 5.8 hr. The equilibrium adsorption isotherm was explained by the Freundlich equation and was classified as S-type. The amounts of KH-502 leached through the soil column (C) as compared to initial conc. ($C_0$) were very low and these relative concentrations ($C/C_0$) were 0.073 and 0.017 in SL and CL soils, respectively. The residual conc. of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 under the field conditions were estimated to be 20 and 18 days in the SL and CL soils, respectively. The KH-502 cone, transported to the subsurface soils was extremely low. These results demonstrate that KH-502 has a low pollution risk potential to the surrounding environment as far as it is used following the recommended guideline.

  • PDF

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Dissipation Pattern of Boscalid in Cucumber under Greenhouse Condition (시설 내 오이 재배 중 살균제 Boscalid의 잔류특성)

  • Lee, Jong-Hwa;Park, Hee-Won;Keum, Young-Soo;Kwon, Chan-Hyeok;Lee, Young-Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The dissipation patterns of a boscalid in cucumber under greenhouse condition was investigated to establish pre-harvest residue limit (PHRL) and biological half-life. Initial concentration of boscalid in cucumber at standard application rate was $7.29\;mg\;kg^{-1}$ and decreased to $0.04\;mg\;kg^{-1}$ after 15 days with half-life of 1.9 day, while the initial concentration was $14.69\;mg\;kg^{-1}$ and decreased to $0.11\;mg\;kg^{-1}$ after same period with half lift of 2.0 day at double application rate. PHRL was suggested by prediction curve derived from the decay curve of boscalid at double rate treatment. For example, $10.39\;mg\;kg^{-1}$ was calculated for 10 days before harvest, and $1.73\;mg\;kg^{-1}$ for 5 days. Dilution effect was major factor far the decrease of boscalid residue due to fast increasement of weight of cucumber during cultivation. Final residues level of boscalid was predicted based on the dissipation curve and guideline on safe use, when boscalid was used to control powdery mildew and gray mold. At standard rate application, $1.26\;mg\;kg^{-1}$ and $1.33\;mg\;kg^{-1}$ were calculated as final residue levels for control powdery mildew and gray mold, respectively, which are above the MRL(Meximum Residue Limit).

Studies on the Distribution of Pesticide Deposit on Rice Plants Sprayed with Various Dilution and Dosage (농약(農藥)의 살포방법(撒布方法)이 수도체부위별(水稻體部位別) 부착량(附着量)에 미치는 영향(影響))

  • Oh, Byung-Youl;Jeong, Young-Ho
    • Applied Biological Chemistry
    • /
    • v.24 no.3
    • /
    • pp.181-185
    • /
    • 1981
  • Distribution of pesticide deposit on the upper and lower halves of rice plants sprayed with various dilution and dosage of fenitrothion EC, Imidan WP, diazinon EC and phenthoate EC was studied under paddy field. Increasing dilution or dosage of the pesticides resulted in high level of deposits on the lower half of rice plants. The distribution of pesticide deposits on the upper half of Milyang 23 was higher than that of Akibare irrespective of pesticides, dilution and dosage.

  • PDF

Absorption , Translocation and Residue of Carbofuran in Miniature Paddy Agrosystem (소형수도재배구중(小型水稻栽培區中) Carbofuran 의 흡수(吸收) 이행(移行) 및 잔류특성(殘留特性))

  • Lee, Young-Deuk;Park, Hyung-Man;Park, Young-Sun;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • A study has been conducted to investigate the behavior of carbofuran in a miniature paddy agrosystem simulated for paddy field. Carbofuran applied onto the paddy water was rapidly absorbed and translocated into rice plants. Carbofuran concentration in rice plant reached its maximum level between 1 to 3 days after treatment and gradually decreased thereafter. Half life of carbofuran concentration in paddy water was 4 days in both application rates of 0.12 and 0.24Kg a.i./10a. Carbofuran residue in paddy soil was gradually dissipated with the half life of 8 and 12 days in 0.12 and 0.24㎏ a.i./l0a respectively. Range of carbofuran residue in brown rice and rice straw harvested from the paddy agrosystem was 0.01∼0.02 ppm and 0.37∼0.57 ppm irrespective of the two application rates respectively.

  • PDF