• Title/Summary/Keyword: 잔류자화기억도

Search Result 3, Processing Time 0.014 seconds

Magnetism of Ferric Iron Oxide and Its Significance in Martian Lithosphere (화성 암권의 진화해석을 위한 예비연구: 3가철 산화물의 자화특성)

  • Jeong, Doo-Hee;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.189-194
    • /
    • 2011
  • Martian satellite missions indicate that Martian equatorial plains are covered by ferric iron oxide. As a non-destructive technique, low-temperature treatment of remanent magnetization is effective in identifying magnetic minerals in rocks. In the present study, four sets of ferric iron oxides were prepared by aqueous alteration of ferrihydrite at warm conditions and four others by dehydration of goethite. As the amount of aluminous trivalent cations increases, crystallographic lattice parameters and N$\acute{e}$el temperatures decrease. Such declines originate from lattice distortion as the smaller aluminous trivalent cations substitue the larger terric irons. Whilst high remanence memory was observed for aqueously produced ferric iron oxide, low remanence memory was observed for dehydrated ferric iron oxide. In the future. magnetic remanence memory would be powerful in diagnosing the origin of ferric iron oxide.

Magnetic Properties of Magnetites at Low Temperatures (자철석의 저온 자화특성)

  • Hong, Hoa-Bin;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature ($T_v$, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point ($T_i$, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at $T_v$ during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing $T_i$ and $T_v$. On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.

Magnetic Stability of Hematite on Low-temperature Magnetic Phase Transition (저온변환에 따른 적철석의 자화안정도)

  • Jang, Sujin;Yu, Yongjae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Recent progress in Martian exploration identified hematite as the major candidate for the strong magnetic anomalies observed in Martian lithosphere. In the present study, grain-size dependence of thermoremanent magnetization and low-temperature stability of room-temperature saturation isothermal remanent magnetization (RTSIRM) were monitored using synthetic hematites. For hematite, the antiferromagnetic spin configuration is re-arranged from being perpendicular to the c-axis to be parallel to the c-axis below the Morin transition ($=T_M$). A large fraction of RTSIRM is demagnetized at $T_M$ (= 260 K) during zero-field cooling from 300 K to 10 K. About 37% of the initial RTSIRM is recovered on warming from 10 K to 300 K. Shallow Martian subsurface at 1~2 km depth would experience low-temperature cooling-warming of $T_M$ because average Martian surficial temperature is about 220 K. However in most Martian lithosphere whose temperatures are higher than 260 K, the very stable magnetic memory of hematite could be a contributor to Martian magnetic anomalies.