Browse > Article
http://dx.doi.org/10.9727/jmsk.2013.26.1.19

Magnetic Stability of Hematite on Low-temperature Magnetic Phase Transition  

Jang, Sujin (Department of Geology and Earth Environmental Sciences, Chungnam National University)
Yu, Yongjae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.26, no.1, 2013 , pp. 19-25 More about this Journal
Abstract
Recent progress in Martian exploration identified hematite as the major candidate for the strong magnetic anomalies observed in Martian lithosphere. In the present study, grain-size dependence of thermoremanent magnetization and low-temperature stability of room-temperature saturation isothermal remanent magnetization (RTSIRM) were monitored using synthetic hematites. For hematite, the antiferromagnetic spin configuration is re-arranged from being perpendicular to the c-axis to be parallel to the c-axis below the Morin transition ($=T_M$). A large fraction of RTSIRM is demagnetized at $T_M$ (= 260 K) during zero-field cooling from 300 K to 10 K. About 37% of the initial RTSIRM is recovered on warming from 10 K to 300 K. Shallow Martian subsurface at 1~2 km depth would experience low-temperature cooling-warming of $T_M$ because average Martian surficial temperature is about 220 K. However in most Martian lithosphere whose temperatures are higher than 260 K, the very stable magnetic memory of hematite could be a contributor to Martian magnetic anomalies.
Keywords
hematite; mars; saturation remanent magnetization; remanence memory; morin transition;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ozima, M. and Funaki, M. (2001) Magnetic properties of hemoilmenite single crystals in Haruna dacite pumice revealed by the Bitter technique, with special reference to self-reversal of thermoremanent magnetization. Earth Planets Space, 53, 111-119.   DOI
2 Purucker, M., Ravat, D.T., Frey, H.V., Voorhies, C.V., Sabaka, T., and Acuna, M.H. (2000) An altitudenormalized magnetic map of Mars and its interpretation. Geophysical Research Letters, 27, 2449-2452.   DOI   ScienceOn
3 Schubert, G., Russell, C.T., and Moore, W.B. (2000) Timing of the Martian dynamo. Nature, 408, 666-667.   DOI   ScienceOn
4 Verwey, E.J.W. (1939) Electronic conduction of magnetite and its transition point at low temperatures. Nature, 144, 327-328.
5 Yamazaki, T. and Ioka, N. (1997) Environmental rockmagnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene. Paleoceanography, 12, 111-124.   DOI   ScienceOn
6 Hwang, G.C. and Kim. Y-H. (2011) Structure refinement and equation of state studies of the exsoluted Ilmenite-Hematite. Journal of the Mineralogical Society of Korea, 24(3), 195-204 (in Korean with English abstract).   과학기술학회마을   DOI   ScienceOn
7 Jeong. D., and Yu, Y. (2011) Magnetism of ferric iron oxide and its significance in Martian lithosphere. Journal of the Mineralogical Society of Korea, 24(3), 189-194 (in Korean with English abstract).   과학기술학회마을   DOI   ScienceOn
8 Jeong. G-Y. and Kim S.J. (1990) Iron oxide minerals in the Sancheng Kaolin deposits. Journal of the Mineralogical Society of Korea, 3(2), 79-88 (in Korean with English abstract).
9 Kim, J.J. and Kim. S.J. (2003) Mineralogy of ferrihydrite and Schwertmannite from the acid mine drainage in the Donghae coal mine area. Journal of the Mineralogical Society of Korea, 16(2), 191-198 (in Korean with English abstract).   과학기술학회마을
10 Kletetschka, G. and Wasilewski, P.J. (2002) Grain size limit for SD hematite. Physics of the Earth and Planetary Interiors, 129, 173-179.   DOI   ScienceOn
11 Kletetschka, G., Wasilewski, P.J., and Taylor, P.T. (2000) Hematite versus magnetite as the signature for planetary magnetic anomalies. Physics of the Earth and Planetary Interiors, 119, 239-267.
12 Liu, Q., Barron, V., Torrent, J., Qin. H., and Yu, Y. (2010) The magnetism of micro-sized hematite explained. Physics of the Earth and Planetary Interiors, 183, 387-397.   DOI   ScienceOn
13 Maher, B.A. and Dennis, P.F. (2001) Evidence against dust-mediated control of glacial-interglacial changes in atmosphere $CO_2$. Nature, 411, 176-180.   DOI   ScienceOn
14 Morin, F.J. (1950) Magnetic susceptibility of hematite with added titanium. Physical Review, 78, 819-820.
15 Morrish, A.H., Johnston, G.B., and Curry, N.A. (1963) Magnetic transition in pure and Ga doped hematite. Physics Letters, 7, 177-178.   DOI   ScienceOn
16 Muench, G.J., Arajs, S., and Matijevic, E. (1985) The Morin transition in small hematite particles. Physica Status Solidi A, 92, 187-192.   DOI   ScienceOn
17 Neel, L. (1949) Essai d'imterpretation des proprietes magnetiques du sesquioxyde de fer rhomboedrique. Annals of Physics, 4, 249-268.
18 Neel, L. and Pauthenet, R. (1952) Etude thermomagnetique d'un monocristal de hematite. Comptes Rendus de l'Academie des Sciences, 234, 2172-2174.
19 Ozdemir, O. and Dunlop, D.J. (2005) Thermoremanent magnetization of multidomain hematite. Journal of Geophysical Research, 110, B09104, doi:10.1029/ 2005JB003820.   DOI
20 Ozdemir, O. and Dunlop, D.J. (2006) Magnetic memory and coupling between spin-canted and defect magnetism in hematite. Journal of Geophysical Research, 111, B12S03, doi:10.1029/2006JB004555.   DOI
21 Ozdemir, O., Dunlop, D.J., and Berquo, T.S. (2008) Morin transition in hematite: Size dependence and thermal hysteresis. Geochemistry Geophysics Geosystems, 9(10), Q10Z01, doi:10.1029/2008GC002110.   DOI
22 Acuna, M.H., Connerney, J.E.P., Wasilewski, P., Lin, R.P., Mitchell, D., Anderson, K.A., Carlson, C.W., McFadden, J., Rene, H., Mazelle, C., Vignes, D., Bauer, S.J., Cloutier, P., and Ness, N.F. (2001) Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. Journal of Geophysical Research, 106(E10), 23403-23417.   DOI
23 Bhowmik, R.N. and Saravanan, A. (2010) Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic hematite nanograins. Journal of Applied Physics, 107, 053916, 1-10.
24 Chevallier, R. (1951) Proprietes magnetiques de l'oxyde ferrique rhomboedrique hematite. Journal de Physique et le Radium, 12, 172-188.   DOI
25 Dunlop, D.J. and Kletetschka, K. (2001) Multidomain Hematite: A source of planetary magnetic anomalies? Geophysical Research Letters, 28(17), 3345-3348.   DOI   ScienceOn
26 Dzyaloshinsky, I. (1958) A thermomagnetic theory of "weak" ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4, 241-255.   DOI   ScienceOn
27 Glotch, T.D. and Christensen, P.R. (2005) Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history. Journal of Geophysical Research, 110, E09006, doi:10.1029/2004JE002389.   DOI   ScienceOn
28 Haigh, G. (1957a) The effect of added titanium and aluminium on the magnetic behavior of alpha-ferric oxide. Philosophical Magazine, 2, 505-520.   DOI
29 Hartstra, R.L. (1982) Some rock magnetic parameters for natural iron-titanium oxides. Ph. D. thesis, 145 pp., Univ. of Utrecht, Utrecht, Netherlands.
30 Haigh, G. (1957b) Observation on the magnetic transition in hematite at 258 K. Philosophical Magazine, 2, 877-890.   DOI   ScienceOn