• Title/Summary/Keyword: 잔류의약물질

Search Result 40, Processing Time 0.023 seconds

Fate and mass balance of pharmaceuticals of unit processes in a sewage treatment plant (하수처리시설 단위공정별 잔류의약물질 거동 및 물질수지 분석)

  • Park, Junwon;Kim, Changsoo;Lee, Wonseok;Lee, Soo-Hyung;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.367-377
    • /
    • 2019
  • In this study, the fate and removal of 15 pharmaceuticals (including stimulants, non-steroidal anti-inflammatory drugs, antibiotics, etc.) in unit processes of a sewage treatment plant (STP) were investigated. Mass loads of pharmaceuticals were 2,598 g/d in the influent, 2,745 g/d in the primary effluent, 143 g/d in the secondary effluent, and 134 g/d in the effluent. The mass loads were reduced by 95% in the biological treatment process, but total phosphorous treatment did not show a significant effect on the removal of most pharmaceuticals. Also, mass balance analysis was performed to evaluate removal characteristics of pharmaceuticals in the biological treatment process. Acetaminophen, caffeine, acetylsalicylic acid, cefradine, and naproxen were efficiently removed in the biological treatment process mainly due to biodegradation. Removal efficiencies of gemfibrozil, ofloxacin, and ciprofloxacin were not high, but their removal was related to sorption onto sludge. This study provides useful information on understanding removal characteristics of pharmaceuticals in unit processes in the STP.

Improvement of an Analytical Method for Fluoroimide Residue in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Fluoroimide의 잔류농약 분석법 개선)

  • Kim, Nam Young;Park, Eun-Ji;Shim, Jae-Han;Lee, Jung Mi;Jung, Yong Hyun;Oh, Jae-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.220-227
    • /
    • 2021
  • Fluoroimide is a fungicide and is also used as a pesticide for persimmons and potatoes. The established fluoroimide pesticide analysis method takes a long time to perform and uses benzene, a carcinogen. In addition, a lower limit of quantification is required due to enforcement of the Positive List System. Therefore, this study aimed to improve the analysis method for residual fluoroimide to resolve the problems associated with the current method. The analytical method was improved with reference to the increased stability of fluoroimide under acidic conditions. Fluoroimide was extracted under acidic conditions by hydrogen chloride (4 N) and acetic acid. MgSO4 and NaCl were used with acetonitrile. C18 (octadecylsilane) 500 mg and graphitized carbon black 40 mg were used in the purification process. The experiment was conducted with agricultural products (hulled rice, potato, soybean, mandarin, green pepper), and liquid chromatograph-tandem mass spectrometry was used for the instrumental analysis. Recovery of fluoroimide was 85.7-106.9% with relative standard deviations (RSDs) of less than 15.6%. This study reports an improved method for the analysis of fluoroimide that might contribute to safety by substituting the use of benzene, a harmful solvent. Furthermore, the use of QuEChERS increased the efficiency of the improved method. Finally, this research confirmed the precise limit of quantification and these results could be used to improve the analysis of other residual pesticides in agricultural products.

Study for Residue Analysis of Herbicide, Clopyralid in Foods (식품 중 제초제 클로피랄리드(Clopyralid)의 잔류 분석법)

  • Kim, Ji-young;Choi, Yoon Ju;Kim, Jong Su;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyo Chin
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND: Pesticide residue analysis is an essential activity in order to establish the food safety of agricultural products. Analytical approaches to the food safety are required to meet internationally the guideline of Codex (Codex Alimentarius Commission, CAC/GL 40). In this study, we developed a liquid chromatograph-tandem mass spectrometer (LC-MS/MS) method to determine the herbicide clopyralid in food matrixes. METHODS AND RESULTS: Clopyralid was extracted with aqueous acetonitrile containing formic acid and the extracts were mixed in a citrate buffer consisted of magnesium sulfate anhydrous, NaCl, sodium citrate dihydrate and disodium hydrogencitrate sesquihydrate followed by centrifugation. The supernatants were filtered through a nylon membrane filter and used for the analysis of clopyralid. The method was validated by accuracy and precision experiments on the samples fortified at 3 different levels of clopyralid. LC-MS/MS in positive mode was employed to quantitatively determine clopyralid in the food samples. Matrix-matched calibration curves were inearranged from 0.001 to 0.25 mg/kg with r2 > 0.994. The limits of detection and quantification were determined to be 0.001 and 0.01 mg/kg, respectively. There covery values of clopyralid for tified at 0.01 mg/kg in the control samples ranged from approximately 82 to 106% with relative standard deviations below 2 0%. CONCLUSION: The method developed in this study meets successfully the Codex guideline for pesticide residue analysis in food samples. This, the method could be applicable to determine pesticides in foods produced domestically and internationally.

Evaluation and application of pretreatment methods for pharmaceuticals and personal care products in the solid phase of sewage samples (하수처리시설 고상시료 중 잔류의약물질 분석을 위한 전처리법 평가 및 적용)

  • Park, Junwon;Kim, Changsoo;Ju, Byoungkyu;Lee, Wonseok;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.559-572
    • /
    • 2018
  • The aim of this study was to evaluate pretreatment methods for 27 pharmaceuticals and personal care products (PPCPs) in various sewage samples using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and online solid-phase extraction with LC-MS/MS. Extraction efficiencies of PPCPs in the solid phase under different experimental conditions were evaluated, showing that the highest recoveries were obtained with the addition of sodium sulfate and ethylenediaminetetraacetic acid disodium salt dehydrate in acidified conditions. The recoveries of target compounds ranged from 91 to 117.2% for liquid samples and from 61.3 to 137.2% for solid samples, with a good precision. The methods under development were applied to sewage samples collected in two sewage treatment plants (STPs) to determine PPCPs in liquid and solid phases. Out of 27 PPCPs, more than 19 compounds were detected in liquid samples (i.e., influent and effluent) of two STPs, with concentration ranges of LOQ-33,152 ng/L in influents and LOQ-4,523 ng/L in effluents, respectively. In addition, some PPCPs such as acetylsalicylic acid, ibuprofen, and ofloxacin were detected at high concentrations in activated sludge as well as in excess sludge. This methodology was successfully applied to sewage samples for the determination of the target compounds in STPs.

React-based Web System Providing Residual Material Information (잔류물질정보 제공을 위한 React 기반 웹 서비스)

  • Kim, Boseon;Lee, Min-Seong;Gang, MinGyu;Park, Jee-Tae
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • With the spread of the Internet, users can easily receive various services and exchange information through the web. There are several requirements for building a web system, and it must be developed using a programming language or platform for user purposes. Residual material information refers to information on medicines and pesticides added to food, and residual material standards are used to measure the level of residues in food produced by companies and farmers to determine whether those levels meet domestic or international standards. Currently, the Ministry of Food and Drug Safety provides residual acceptance standards for food additives, including food, pesticides and animal medicines, in the form of documents, which must be serviced smoothly and conveniently by users through the establishment of a web system. It must also meet a variety of requirements, including user accessibility, such as scalability and compatibility. This paper proposes react-based residual material information web system that allows users to access more conveniently and receive residual material information smoothly. We measured the speed for the three inportant functions of information provision and compared them with existing residual material information web systems and qualitatively evaluated the seven essential requirements: scalability, compatibility, and accessibility.

Evaluation on the removal efficiency of pharmaceutical compounds in conventional drinking water treatment processes (정수처리 공정에서 잔류의약물질 제어 효율 평가)

  • Seo, Hee-Jeong;Park, Yong-Hoon;Kang, In-Sook;Myong, Hwa-Bong;Song, Yang-Suk;Kang, Yeong-Ju
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.126-135
    • /
    • 2016
  • In the present study, we evaluated the efficiency of the drinking water treatment unit processes controlled by targeting high pharmaceutical compounds that are likely to be released into the water supply. In the coagulation process, the removal rate of sulfonamide, an antibiotic, amounted to 22.6~42.1 %, that of naproxen to 28.2 %, and that of acetaminophen to 20 %. Trimethoprim has demonstrated a low removal rate (4.4 %), while the removal rate of erythromycin was 2.4 %; aspirin was not removed at all. When applying a mixture of chlorination and the coagulation process, the removal rate was increased with increasing the chlorine dosage. When the chlorine injection with the concentration of 3 mg/L was applied, sulfonamide antibiotics, acetaminophen and naproxen, were completely removed. Trimethoprim exhibited a high removal efficiency of ca. 98%, while the removal efficiency of erythromycin was about 55 %; at the same time, aspirin showed a lower removal ratio (ca. 10 %). When applying the powdered activated carbon adsorption process, the removal rate was increased with increase of the concentration of the powder activated carbon injection. Sulfonamide antibiotics showed about 18~50 % removal efficiency in the 1 mg/L, the removal rate was increased by at least 80 % in 25 mg/L. The evaluation results of the titration injection concentration of chlorine treatment and adsorption, coagulation process for the efficient processing of the remaining pharmaceutical compounds in the water treatment process, when applying the chlorine 3 mg/L, powdered activated carbon 10 mg/L and coagulant 15 mg/L were removed more than 90 %.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

The analysis of pharmaceuticals in drinking water by HPLC/ESI-MS/MS (HPLC/ESI-MS/MS에 의한 먹는물(정수) 중 의약물질의 분석)

  • Park, Mi-Sun;Kim, Byung-Joo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.457-464
    • /
    • 2010
  • The analytical method of four pharmaceuticals (virginiamycin, erythromycin, tylosin and cimetidine) in drinking water was developed. Effective simultaneous sample clean-up and extraction by solid-phase extraction (SPE) using HLB cartridge prior to LC/ESI-MS/MS analysis were performed. A linear correlation observed in the calibration curves for drinking water in the range of 0.01~2.0 ng/mL showed above $r^2$=0.995. Absolute recovery was in the range of 64.7~118.1% (except cimetidine (37.7~48.1%)). Limit of detection (LOD) and limit of quantitation (LOQ) in spiked drinking water matrix were in the range of 1.6~74.8 pg/mL and 5.5~249.7 pg/mL, respectively. The established method can be used to determine low pg/mL levels of pharmaceuticals in the drinking water.

Simultaneous analysis and occurrences of six pharmaceuticals in surface water by LC/ESI-MS/MS (LC/ESI-MS/MS를 이용한 하천수 중 잔류 6종 의약물질의 동시분석 및 모니터링)

  • Kim, Byung-Ju;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.572-578
    • /
    • 2010
  • The extraction/clean-up and concentrating of pharmaceuticals from surface water were performed by HLB (Hydrophilic-Lipophilic Balanced) cartridge. The method allows for the simultaneous determination of six pharmaceuticals by HPLC/ESI(+)-MS/MS. Recoveries of the pharmaceutical were between 71.1 to 92.6% (except fenbendazole) and the overall variability of the method was below 11.2% (RSD). The calibration curves for the pharmaceuticals from blank surface water showed good linearities (above $r^2$ = 0.99) in the concentration range of 0.007~1.2 ng/mL. The limit of detection (LOD) and the limit of quantification (LOQ) were 7.2~128.7 pg/mL and 23.8~429.1 pg/mL, respectively. The present analytical method can be useful for monitoring residual pharmaceuticals in surface water and other aquatic samples. High concentrations of iopromide and fenbendazole were detected in a few samples of surface water.

Ecotoxicological Risk Assessment for Acetaminophen in Kyongahn River

  • Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.440-445
    • /
    • 2006
  • Acetaminophen (paracetamol), generally used as a pain reducing agent, has good analgesic efficacy in toothaches and headaches, but is of little use in inflammatory and visceral pain. This study was performed to analyze the level of acetaminophen in the Kyongahn river and to investigate the ecological risks of target compounds. Sampling sites were Haesil, Soopyo, Wangsan, Kyongahn, Jiwol, Kwangdong, Paldang and they were analyzed in June and August, 2005. Acute toxicity of acetaminophen wwas evaluated for Daphnia magna. From the ecotoxicological results, environmental risk assessments were performed for acetaminophen residues in Kyongahn river to predict their potential adverse effect. Acetaminophen was detected at Kyonahn river, $0.439{\mu}g/l$). The toxic concentration of acetaminophen calculated with 48-h $LC_{50}$ values as 16.9 mg/l. These results indicated that acetaminophen had no significant ecotoxicological impact on short-term acute exposure.