• Title/Summary/Keyword: 잔디 예지물

Search Result 26, Processing Time 0.023 seconds

Screening of Biological Activities of Grass Clippings from Turfgrass (잔디 예지물의 생리활성 탐색)

  • Lee, Ah Young;Wang, Xiaoning;Lee, Dong Gu;Tae, Hyun Sook;Cho, Eun Ju;Lee, Sanghyun
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.208-213
    • /
    • 2015
  • This study was carried out to investigate the biological activities of grass clippings from turfgrass including Zoysia japonica (TG-1), Zoysia matella (TG-2), Agrostis palustris (TG-3), and Poa pratensis (TG-4). The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity was relatively higher in TG-1 and -2. Especially, TG-1 exerted the strongest hydroxyl radical scavenging effect, showing 90.40% at the concentration of 100 μg/ml. In addition, TG-1 inhibited the growth of Staphylococcus aureus, Escherichia coli and Helicobactor pylori. TG-1 also showed the highest inhibitory effect of AGS human gastric adenocarcinoma cell growth and nitric oxide production against lipopolysaccharide in RAW 264.7 macrophage cells. In conclusion, among the TG extracts, TG-1 has anti-oxidative, anti-microbial, anti-cancer and anti-inflammatory effect, indicating that TG-1 may be the potential source of functional food.

Biological Characteristics and Control of Annual Bluegrass (Poa annua) (Annual Bluegrass의 생물학적 특성과 방제)

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • The object of this study is to review the current states of the characteristics and strategies to control annual bluegrass to apply information to the circumstance of South Korea. Annual bluegrass is one of the most widespread turfgrass species which has great ability to produce seedhead and shoot growth. It also has ability to tolerate low mowing height and to form uniformity of turfgrass when it is established. Annual bluegrass is well-known as weak turfgrass for high and low temperature. High rate of nitrogen and phosphorus improves growth of annual bluegrass. To control annual bluegrass, deep and infrequent irrigation is more effective than light and frequent irrigation. Clipping removal is more effective than clipping return to control annual bluegrass. Prodiamine, bensulide, and dithiopyr are applied as pre-emergence herbicide, and ethofumesate and bisbyribac-sodium are used as post-emergence herbicide. Paclobutrazol and flurprimidol are used as plant growth regulator. Trinexapac which is one of the most popular plant growth regulators (PGRs) in South Korea is not proper to control annual bluegrass because it accelerates improve growth of annual bluegrass in summer. Although chemical control is mainly used in South Korea, combination of cultural and chemical control may be the strategy to maximize effectiveness to control annual bluegrass.

Evaluationof Phosphorus Rateand Mixing Depthonthe Growthand Establishment of Kentucky bluegrass(Poapratensis L.) in Sand-Based Systems (모래 조건에서 캔터키블루그래스의 생장과 정착에 대한 인산의 양과 혼합 깊이가 미치는 영향)

  • Lee, Sang-Kook;Minner, David D.;Nick E., Christians;Taber, Henry G.
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.353-360
    • /
    • 2009
  • Phosphorus (P) is one of the essential elements of the phospholipids that are involved in the formation of plant cell membranes. Phosphorus is highly immobile in soils and is often a limiting nutrient for plant growth. Phosphorus mobility and availability varies with several factors such as application frequency, placement in the soil, and the amount of irrigation or precipitation. This study was conducted to evaluate the effect of P applications at level of 0, 146, and 293 $kg{\cdot}ha^{-1}$ at four mixing depths (0, 7.6, 15.2, and 22.9 cm )on the growth and establishment of Kentucky bluegrass (Poapratensis L.) in a sand-based system.Grass clipping samples were collectedevery two weeks, dried, and weighed. Total root dry weight, root organic matter, and tissue content of P were measured at the end of the study. Leachate was collected weekly and analyzed for total P concentration. No difference was found between application of P to the surface and to the 7.6 cm mixing depth. However, surface application with 146 and 293 kg $P{\cdot}ha^{-1}$ produced 8-10% and 16-20% more P in tissue than subsurface applications, respectively.

Effects of 'Methylen Urea' Slow Released Fertilizer and 'T-Vigor' Microbial Fertilizer as Environmental Fertilizer on Growth of Creeping Bentgrass in Golf Course (친환경적 비료인 완효성 비료 'Methylen Urea' 및 미생물 비료 'T-Vigor' 처리가 골프장 그린의 크리핑 벤트크래스 생육에 미치는 영향)

  • Lee Kyeung-Ju;Lee Jae-Pil;Kim Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.2
    • /
    • pp.63-70
    • /
    • 2004
  • This study was conducted to figure out the effect of 'Methlyen Urea(MU)', slow released fertilizer and 'T-Vigor', microbial fertilizer as environment fertilizer on growth of 'Crenshaw' creeping bentgrass for environmental management in golf course. This study was conducted at No. 3, 4, 5 Valley Courses of Rexfield Country Club from April to July in 2004. MU, T-Vigor, sterilized T-Vigor were applied five times with 5g and 7.5ml per square meter, respectively. Polt size was 1 square meter and there were three replications with Completely Randomize Design. Collecting data were turf density$(No.\;of\;shoot\;/cm^2)$, chlorophyll $amount(\%)$, root length(cm), dry weight of clipping(g), and dry weight of root(g). The results are as follows; All of turf density, chlorophyll amount and dry weight(g) of MU and T-Vigor were better than control and sterilized T-Vigor. Especially root length of MU and T-Vigor was superior to control and sterilized T-Vigor, even if temperature and humidity was high. In conclusion, MU and T-Vigor might be used as slow release fertilizer for environmental green management in golf course.

Effects of Salinity Level and Irrigation Rate on Kentucky Bluegrass (Poa pratensis L.) Growth and Salt Accumulation in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 관수용수의 량 및 염농도에 따른 토양내 염류 집적과 켄터키 블루그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to obtain information on rates and salinity levels of irrigation for growth of Kentucky bluegrass by minimizing the hazard of salt accumulation in the sand based growing medium. Root zone profile consists of 20 cm sand based top soil, 20 cm of coarse sand as layer to interrupt capillary rise and 10 cm of reclaimed paddy soil as a base of the root zone profile. Topsoil was a mixture of dredged sand and peat with a ratio of 95%: 5% by volume. The columns were soaked into 5 cm depth saline water reservoir with salinity level of 3-5 $dSm^{-1}$. Salinity levels of irrigation water were 0, 2 and 3 $dSm^{-1}$. Irrigation rates were 3.8, 5.7 and 7.6 mm $day^{-1}$ which were equivalent to 70%, 100% and 130% of average ET (evapotranspiration) rate of Kentucky bluegrass, and irrigation interval was 3 days. Salt accumulation was due to irrigated water and moved up water from shallow water base. At the end of second year, the accumulation of salt in the rootzone showed ECc of3.86, 4.7 and 5.1 $dSm^{-1}$, and SAR of 19.2, 23.9 and 27.5 when the salinities were 0, 2 and 3 dS $m^{-1}$, respectively. Irrigation rates of 100% and 130% of ET rate with saline water did not decrease ECe and SAR in growing media. The growth of KEG was influenced by irrigation rate in the $1^{st}$ year, however, salinity level was more critical in the $2^{nd}$ year. Compared to non-saline water, saline water of 2 and 3 dS $m^{-1}$ resulted in decreased visual quality by 3.2% and 16.5%, by 6.4% and 39.3% in clipping weight, and by 5.5% and 5.0% in root mass, respectively.

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF