• Title/Summary/Keyword: 잔골재 조립률

Search Result 20, Processing Time 0.02 seconds

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

An Experimental Study on the Measurement of Finess Modulus Using CNN-based Deep Learning Model (CNN기반의 딥러닝 모델을 활용한 잔골재 조립률 예측에 관한 실험적 연구)

  • Lim, Sung-Gyu;Yoon, Jong-Wan;Pack, Tae-Joon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.10-11
    • /
    • 2021
  • As concrete is used in many construction works, the use of aggregates is increasing. However, supply and demand of high-quality aggregates has become difficult recently, and although circular aggregates that recycle construction waste are used, the performance of concrete, such as liquidity and strength, are being reduced due to defective aggregates. As a result, quality tests such as sieve analysis test are conducted, but a lot of waste occurs such as time and manpower. To solve this problem, this study was conducted to measure the assembly rate of fine aggregate, which accounts for about 35% of the concrete volume, using Deep Learning.

  • PDF

A Fundamental Study on the Measurement of Fineness Modulus Using CNN-based Deep Learning Model (CNN기반의 딥러닝 모델을 활용한 잔골재 조립률 예측에 관한 기초적 연구)

  • Lim, Sung-Gyu;Yoon, Jong-Wan;Pack, Tae-Joon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.50-51
    • /
    • 2021
  • Recently, as concrete is used in many construction works in Korea, the use of aggregates is also increasing. However, the depletion of aggregate resources is making it difficult to supply and demand high-quality aggregates, and the use of defective aggregates is causing problems such as poor performance such as the liquidity and strength of concrete pouring out in the field. As a result, quality tests such as sieve analysis test is conducted on their own, but this study was conducted to improve time and manpower by using the CNN-based Deep Learning Model for the fineness modulus.

  • PDF

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

An Experimental Study on the Properties of Concrete with Regional Fine Aggregate Properties and Modulation of Fine Aggregate Ratio (지역별 잔골재특성 및 잔골재율 조정에 의한 콘크리트 특성에 관한 실험적 연구)

  • Yoo, Seung-Yeup;Lee, Sang-Rae;Lee, Bum-Suck;Song, Yong-Soon;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.465-468
    • /
    • 2008
  • This study investigated the best condition when mixed sand with a river and crushed sand was used though the experiment for the properties of the concrete corresponding to the control of fine aggregate ratio to apply the mixed sand and properties of the fine aggregate at the ready-mixed concrete factory on Yeongnam and Honam. The physical properties of Yeongnam and Honam is satisfied with KS F 2526 and KS F 2527 except fineness modulus and passing amount of 8mm sieve. And, the mixed sand above two types which were incongruent to use individually was being used at each factory, and it was managed in accordance with KS. The flowabillity of the mixture proportion of concrete which was estimated by method of unit volume weight according to the fine aggregate ratio at each factory on Yeongnam and Honam was higher than existing mixture proportion. It was analyzed that the residual water due to decline of the surface area caused by reducing fine aggregate ratio was increased relatively. Accordingly, it was considered that the effect on the economic mixture proportion and improvement of durability might be possible.

  • PDF

Characteristic of Cementitious Mortar Using High Volume of Recycled Fine Aggregate (순환잔골재의 다량 사용에 따른 모르타르의 특성)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • As for a possibility of using high volume of recycled aggregate in concrete mixture, recycled fine one which is known to be worse in quality and hard to control was selected and investigated in terms of performance of mortar as the replacement ratio to natural fine aggregate was changed. As a result of test, it is found that grade of recycled fine aggregate was beyond standard one and fineness modulus of that itself was increased in compare to natural one. In case of making mortar with recycled fine aggregate, disadvantageous results such as less fluidity and air content including the increase of dry shrinkage were shown but strengths of mortar were comparable to the one making with natural aggregate, which means that planned strength of common concrete structure can be achieved by controlling W/C and the amount of chemical admixture, and also that large amount of recycled fine aggregate is applicable to the precast concrete products generally free to the amount of water.

Improvement Particle and Physical Characteristics Applying of The Pretreatment Process System of Coal Gasification Slag and It's Verification Based on Statistical Approach (석탄 가스화 용융 슬래그의 전처리 공정 시스템 적용에 따른 입자 및 물리적 특성 개선 및 통계적 검증)

  • Kim, Jong;Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2022
  • The objective of this study is to investigate whether CGS generated in IGCC satisfies the fine aggregate quality items specified in KS F 2527(Concrete Aggregate) through the pretreatment process system and the quality improvement the system. The statistical significance of the pretreatment process was analyzed through Repeated Measurements ANOVA as measured values according to individually pretreatment process system. As a result of the analysis, In the case of CGS fine aggregate quality before and after the pretreatment process system, the density increased 5.2 %, the absorption rate decreased by 1.86 %, the 0.08 mm passing ratio decreased by 2.25 %, and Fineness Modulus and Particle-size Distribution were also found to be adjustable. It was found that the pretreatment process system was significant in improving the quality of CGS.

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.