오늘날의 기업은 상품을 판매하는 것 뿐만 아니라 기업의 신용과 이미지를 위해 그 상품에 대한 사후처리(After Service) 업무에 많은 투자를 하고 있다. 이러한 양질의 사후서비스를 고객에게 공급하기 위해서는 많은 인력을 합리적으로 관리해야 하며 요청되는 고장수리 서비스 업무의 신속한 해결을 위해 업무를 인력에게 합리적으로 배정을 해야 한다. 그러므로, 회사의 비용을 최소화하면서 정해진 시간에 요청된 작업을 처리하기 위해서는 인력들에게 작업을 배정하고 스케줄링하는 문제가 발생된다. 본 논문에서는 이러한 문제를 해결하기 위해서 화학계기의 A/S작업을 인력에게 합리적으로 배정 하는 스케줄링 시스템에 관한 연구이다. 먼저 스케줄링 모델을 HP사의 화학분석 및 시스템을 판매, 유지보수 해주는 Y사의 작업 스케줄을 분석하여 필요한 도메인과 고객서비스전략과 인력관리전략에서 제약조건을 추출하였고 여기에 스케줄링 문제를 해결하기 위한 방법으로 제약만족문제(CSP) 해결기법인 도메인 여과기법을 적용하였다. 도메인 여과기법은 제약조건에 의해 변수가 갖는 도메인의 불필요한 부분을 여과하는 것으로 제약조건과 관련되어 있는 변수의 도매인 크기가 축소되는 것이다. 또한, 스케줄링을 하는데에 있어서 비용적인 측면에서의 스케줄링방법과 고객만족도에서의 스케줄링 방법을 비교하여 가장 이상적인 해를 찾는데 트래이드오프(Trade-off)를 이용하여 최적의 해를 구했으며 실험을 통해 인력에게 더욱 효율적으로 작업들을 배정 할 수 있었고 또한, 정해진 시간에 많은 작업을 처리 할 수 있었으며 작업을 처리하는데 있어 소요되는 비용을 감소하는 결과를 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.472-474
/
2005
개념망은 상당히 도메인에 의존적인 언어자원에 해당한다. 따라서, 도메인이 다른 분야에 적용하고자 한다면, 많은 수정이 요구된다. 그러나 개념망의 편집은 언어 이해 능력이 뛰어난 언어학자들 조차도 상당히 많은 시간이 요구되는 작업이다. 대부분의 시간소요는 개념망의 전체적인 계층구조를 스캐닝하는 작업과 특정 노드를 검색하는 작업에 의한 것이다. 기 구축된 개념망을 분석하면 계층관계에 있는 어휘들간의 일관된 규칙을 발견할 수 있다. 이 논문에서는 어휘들의 뜻풀이와 상위어간의 관계성, 복합명사와 상위어간의 관계성을 통계적으로 분석하였다 분석된 결과를 기반으로 확률모델을 이용하여 상위어 추천 기능을 구현하였다. 상위어 추천 기능의 시간 절감 효과를 실험하기 위해 실험자 2인을 대상으로 개념망 구축에 소요되는 시간을 측정하였다. 상위어 추천 기능이 있는 지능형 워크벤치를 이용할 경우 개념망 작업 시간은 약 $65\%$정도로 단축되는 것을 확인할 수 있었다. 본 지능형 워크벤치는 다양한 도메인에서 요구되는 개념망 구축의 시간 비용 절감에 크게 기절할 것으로 기대된다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.247-256
/
2000
오늘날의 기업은 상품을 판매하는 것 뿐만 아니라 기업의 신용과 이미지를 위해 그 상품에 대한 사후처리(After Service) 업무에 많은 투자를 하고 있다. 이러한 양질의 사후서비스를 고객에게 공급하기 위해서는 많은 인력을 합리적으로 관리해야 하고 요청되는 고장수리 서비스 업무를 빠르게 해결하기 위해서는 업무를 인력들에게 합리적으로 배정을 하고 회사의 비용을 최소화하면서 정해진 시간에 요청된 작업을 처리하기 위해서는 인력들에게 작업을 배정하고 스케줄링하는 문제가 발생된다. 본 논문에서는 이러한 문제를 해결하기 위해 화학계기의 A/S 작업을 인력에게 합리적으로 배정하는 스케줄링 시스템에 관한 연구이다. 먼저 스케줄링 모델을 HP 사의 화학분석 및 시스템을 판매, 유지보수 해 주는 "영진과학(주)"회사의 작업 스케줄을 분석하여 필요한 도메인과 고객서비스전략과 인력관리전략에서 제약조건을 추출하였고 여기에 스케줄링 문제를 해결하기 위한 방법으로 제약만족문제(CSP) 해결기법인 도메인 여과기법을 적용하였다. 도메인 여과기법은 제약조건에 의해 변수가 갖는 도메인의 불필요한 부분을 여과하는 것으로 제약조건과 관련되어 있는 변수의 도메인이 축소되는 것이다. 또한, 스케줄링을 하는데에 있어서 비용적인 측면에서의 스케줄링방법과 고객 만족도에서의 스케줄링 방법을 비교하여 가장 이상적인 해를 찾는데 트래이드오프(Trade-off)를 이용하여 최적의 해를 구했으며 실험을 통해 인력에게 더욱 효율적으로 작업들을 배정 할 수 있었고 또한, 정해진 시간에 많은 작업을 처리 할 수 있었으며 작업을 처리하는데 있어 소요되는 비용을 감소하는 결과를 얻을 수 있었다. 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity
This study is a study on domain automatic classification for domain - based quality diagnosis which is a key element of big data quality diagnosis. With the increase of the value and utilization of Big Data and the rise of the Fourth Industrial Revolution, the world is making efforts to create new value by utilizing big data in various fields converged with IT such as law, medical, and finance. However, analysis based on low-reliability data results in critical problems in both the process and the result, and it is also difficult to believe that judgments based on the analysis results. Although the need of highly reliable data has also increased, research on the quality of data and its results have been insufficient. The purpose of this study is to shorten the work time to automizing the domain classification work which was performed from manually to using machine learning in the domain - based quality diagnosis, which is a key element of diagnostic evaluation for improving data quality. Extracts information about the characteristics of the data that is stored in the database and identifies the domain, and then featurize it, and automizes the domain classification using machine learning. We will use it for big data quality diagnosis and contribute to quality improvement.
Utilizing standards for software process to a specific project requires a tailoring process to meet the development domain. However, the existing tailoring schemes are not systematical and possible to use without analyzing the methodology and development domain. Also, it is not quite easy to apply them to similar projects. This paper includes: 1) systematical tailoring steps and 2) an automatic algOlithm for generating test process based on "a scheme of tailoring process using the component-based development paradigm"; 3) "an automation tool for tailoring, AutoTP" which is derived from XML techniques. Users can generate a tailored test process through our AutoTP automatically without analyzing standards. methodology and domain.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.678-680
/
2023
본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.263-266
/
2004
유사한 제품 패밀리들에 대한 생산성 향상과 재사용성을 향상시키기 위해 Product Line Engineering에 대한 관심이 높아지고 있다. PLE를 이용한 소프트웨어 개발이 기존 방법들보다 생산성과 재사용성을 향상시키기 위해서는 제품 패밀리에 대한 도메인 분석을 통한 핵심 자산을 효율적으로 구축해 놓아야 한다. 현재 SI업체에서 많이 이용하고 있는 프레임웍처럼 PLE의 핵심 자산들을 만들기 위해서는 제품 패밀리 내의 제품들의 특징을 공통성과 가변성으로 분리하고 이들 특성들 간의 관계성을 추출하는 작업이 선행되어야 한다. 본 논문에서는 도메인 전문가 또는 제품 패밀리 분석가들이 제품 패밀리 특징들을 추출하고 모델링하기 위한 방법을 제안하고자 한다.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.141-148
/
2020
Automatic term extraction is to recognize domain-specific terms given a collection of domain-specific text. Previous term extraction methods operate effectively in unsupervised manners which include extracting candidate terms, and assigning importance scores to candidate terms. Regarding the calculation of term importance scores, the study focuses on utilizing sets of inner and outer terms of a candidate term. For a candidate term, its inner terms are shorter terms which belong to the candidate term as components, and its outer terms are longer terms which include the candidate term as their component. This work presents various functions that compute, for a candidate term, term strength from either set of its inner or outer terms. In addition, a scoring method of a term importance is devised based on C-value score and the term strength values obtained from the sets of inner and outer terms. Experimental evaluations using GENIA and ACL RD-TEC 2.0 datasets compare and analyze the effectiveness of the proposed term extraction methods for English. The proposed method performed better than the baseline method by up to 1% and 3% respectively for GENIA and ACL datasets.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.410-413
/
2023
레이블링 작업은 데이터 분석 시 필요한 사전 작업중 하나이다. 모든 데이터들에 대해 레이블링 작업은 시간/인적 자원을 필요로 하기에, 해당 작업을 보완할 방법이 존재한다면 요구되는 리소스를 줄여 효율성을 크게 향상시킬 수 있다. 본 논문에서는 통신회사에서 적재된 데이터 셋에 대하여 레이블이 없는 데이터(Unlabeled-data)에 대해 의사 레이블링(Pseudo-labeling), SMOTE 를 통한 데이터 증강을 활용하여 기존에 활용되지 못한 데이터를 추가하여 모델에 학습시킨다. 실험을 통해 의사 레이블을 통한 모델 학습 방법이 기존 도메인 지식의 레이블 방법보다 효율적이고 성능이 우수함을 확인하였다.
Defense software has short of interoperability due to the vertical development method which is dependent heavily on application area and development environments. In order to prevent from lack of reusability and operability in application domain software development technology needs component concept and makes shift to the trend of domestic software component industry. This paper covers the research topics such as domain analysis and component architecture to improve and extend reusability and inter-operability for defense information system by two approaches, i.e. CBW (Command Based Work flow) analysis and UML components identification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.