• Title/Summary/Keyword: 작물 생장

Search Result 1,249, Processing Time 0.04 seconds

A Statistical Analysis of Phenotypic Diversity Based on Genetic Traits in Barley Germplasms (특성평가 정보를 활용한 보리 유전자원 형태적 형질 다양성의 통계적 분석)

  • Yu, Dong Su;Shin, Myoung-Jae;Park, Jin-Cheon;Kang, Manjung
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • The biodiversity research of barley, a functional food, is proceeding to conserve germplasms and develop new cultivar of barley to improve its functional effects. In this study, with 25,104 barley germplasms in the National Agrobiodiversity Center, South Korea, the biodiversity index of species was much lower (1.17) than the origins (24.73) because of the presence of a biased species, Hordeum vulgare subsp. vulgare, but the species and origin of germplasms were significantly different with regard to genetic traits. In the clustering analysis based on genetic traits, we found that 97% barley germplasms could mostly be distributed between 1~7 clusters out of a total of 15 clusters; 'normal and uzu type', 'lodging', and 'loose smut' were commonly represented in the 1~7 clusters and some clusters showed specific differences in five genetic traits including 'growth habit'. In correlation of each genetic trait, the infection of 'barley yellow mosaic virus' was highly correlated to 'number of grains per spike'. '1000 grain weight' was weakly correlated with seven genetic traits including 'number of grains per spike'. Our analysis for barley's biodiversity can provide a useful guide to the species' phenotypes that need to be collected to conserve biodiversity and to breed new barley varieties.

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.

Comparison of the physicochemical properties of native and cultivated Artemisia fukudo Makino (자생 및 재배 큰비쑥의 이화학적 특성 비교)

  • Bo Ra Kang;Eun Hee Kim;Yeon Kyoung Kim;Ah Hhyun Kim;Gyu Yeon Oh;Yoo Min Park;Ah Hyeon Jo;Hwan Sik Na;Mi Yeong Shin;Yang Joon An;Jeong Yong Cho;So Hyeon Lee
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.267-275
    • /
    • 2024
  • Artemisia fukudo Makino belongs to the Asteraceae family, is a halophyte that can grow in salinity soils and is known for its various physiological activities. However, few studies were comparing it according to the growth environment. Therefore, in this study, we analyzed the antioxidant activity, functional ingredients, and safety of Artemisia fukudo Makino according to the growth environment. Total polyphenol content was the highest in native mature leaves, but 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity was higher in cultivated leaves than in native leaves. The total mineral content, excluding sodium, was higher in cultivated than in native leaves. The content of potassium and calcium was higher in cultivated leaves than in native leaves. In addition, heavy metal analysis showed that cultivated leaves were generally lower than those of native leaves. Residual pesticides were not detected in all samples. In conclusion, since there is no significant difference in cultivated leaves compared to native leaves, it was judged that cultivated leaves could be used as a variety to be grown and mass-produced.

Effects of Some Physico-Chemical Conditions of Sioil on Growth and Ionic Balance of the Tobacco Plant (Nicotiana Tabacum L.) I. Effect of Acidity(pH), Moisture(pF) and Anions (Cl-, SO4-) in Soil on Grwth and Ionic Balance of Tobacco (토양(土壤)의 몇가지 이화학적조건(理化學的條件)이 연초(煙草)의 생육(生育) 및 이온평형(平衡)에 미치는 영향(影響) I. 토양(土壤)의 pH, pF와 음(陰)이온(Cl-, SO4-)이 연초(煙草)의 생육(生育) 및 이온평형(平衡)에 미치는 영향(影響))

  • Kim, Jai-Jong;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.117-129
    • /
    • 1981
  • An experiment with the tobacco plant was conducted in the pots. A sandy humic soil was used with 2 levels of pH, 3.5 and 5.8 with 2 kinds of anions, Cl as $NH_4Cl$ and $SO_4$ as $(NH_4)_2SO_4$, and with 4 levels of pF, 1.5, 2.0, 2.5, and 3.5. The pH-treatment created different N-forms; $NH_4$ at low pH(3.5) and $NO_3$ at high pH (5.8). The results are summarized as follows: 1. At low pH (3.5) with high concentration of $NH_4$ given as $NH_4Cl$, the high content of $NH_4$ and Cl in tobacco resulted in plants suffering from $NH_4$ and Cl toxicity as well as Mn toxicity. As a result of these toxicity, an extremly abnormal growth of tobacco was clearly appeared. In the tobacco grown at low pH with $NH_4$ given as $(NH_4)_2SO_4$, a large amount of the $NH_4$ uptake developed Mg and Ca deficiencies. $NH_4-N$, which had been applied to the soil of high pH (5.8), was almost completely transformed into $NO_3-N$ by nitrification and, on this low acidic soil, the plants were all healthy regardless of Cl or $SO_4$ added together with $NH_4-N$. However, dry matter production was higher and maturity faster when $SO_4$ was used as anion than when Cl was used. 2. High moisture content in soil, to some extent, is necessary for a good development and growth of the tobacco plant. Phosphate uptake seemed to be limited at higher moisture stress. The dry matter yield of tops and roots of tobacco were in the order of pF 1.8 > 2.1 > 2.6 > 3.6, respectively. 3. Data of chemical analysis and dry matter yields of tops and roots showed that the tobacco plant followed the normal (C-A) concept. In the normal growth of plants, the carboxylate content of tops was quite comparable to the estimated (C-A) values. If $NH_4$ content of plants remains in quite high quantities, it must be analysed and taken into consideration for the (C-A) calculation. Al is not transported toward tops in toxic amounts due to its high immobility, it mostly stay in or on the roots, probably due to precipitation as a aolt. When Al is present in high quantities, it has to be considered into the (C-A) calculation.

  • PDF

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW (Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제)

  • Kim, Yong-Ki;Choi, Eun-Jung;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;Jang, Bo-Kyung;Yun, Jong-Cheul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.

Tissue Culture Method as a Possible Tool to Study Herbicidal Behaviour and Herbicide Tolerance Screening (조직배양(組織培養) 방법(方法)을 이용(利用)한 제초제(除草劑) 작용성(作用性) 및 제초제(除草劑) 저항성(抵抗性) 검정방법(檢定方法) 연구(硏究))

  • Kim, S.C.;Lee, S.K.;Chung, G.S.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.174-190
    • /
    • 1986
  • A series of laboratory and greenhouse experiments were conducted to find out the possibility of tissue culture and cell culture methods as a tool to study herbicidal behaviour and herbicide tolerance screening from 1985 to 1986 at the Yeongnam Crop Experiment Station. For dehulled-rice culture, pure agar medium was the most appropriate in rice growth campared to other media used for plant tissue culture method. All the media but the pure agar medium resulted in growth retardance by approximately 50% and this effect was more pronounced to root growth than shoot growth. Herbicidal phytotoxicity was enhanced under light condition for butachlor, 2.4-D, and propanil while this effect was reversed for DPX F-5384 and CGA 142464, respectively. And also, herbicides of butachlor, chlornitrofen, oxadiazon, and BAS-514 resulted in more phytotoxic effect when shoot and root of rice were exposed to herbicide than root exposure only while other used herbicides exhibited no significant difference between two exposure regimes. Similar response was obtained from Echinochloa crusgalli even though the degree of growth retardance was much greater. Particularly, butachlor, 2.4-D, chlornitrofen, oxadiaxon, pyrazolate and BAS-514 totally inhibited chlorophyll biosynthesis even at the single contact of root. Apparent cultivar differences to herbicide were observed at the young seedling culture method and dehulled rice cultivars were more tolerant in DPX F-5384, NC-311, pyrazolate and pyrazoxyfen, respectively. For derant than other types or rice cultivar in butachlor, pretilachlor, perfluidone and oxadiazon while Tongil-type rice cultivars were more tolerant in DPXF-5384, NC-311, Pyrazolate and Pyrazoxyfen, respectively. For dehulled rice culture, on the other hand, Japonica-type rice cultivar was less tolerant to herbicides of butachlor, propanil, chlornitrofen and oxadiazon that was reversed trend to young seedling culture test. Cultivar differences were also exhibited within same cultivar type. In general, relatively higher tolerant cultivars were Milyang 42, Cheongcheongbyeo, Samgangbyeo, Chilseoungbyeo for Tongil-type, Somjinbyeo for Japonica-type and IR50 for Indica-type, respectively. The response of callus growth showed similar to dehulled rice culture method in all herbicides regardless of property variables. However, concentration response was much sensitive in callus response. The concentration ranges of $10^{-9}M-10^(-8)M$ were appropriate to distinguish the difference between herbicides for E. crusgalli callus growth. Among used herbicides, BAS-514 was the most effective to E. crusgalli callus growth. Based on the above results, tissue culture method could be successfully used as a tool for studying herbicidal behaviour and tolerance screening to herbicide.

  • PDF

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.