• Title/Summary/Keyword: 작물재배데이터

Search Result 110, Processing Time 0.026 seconds

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Strawberry disease diagnosis service using EfficientNet (EfficientNet 활용한 딸기 병해 진단 서비스)

  • Lee, Chang Jun;Kim, Jin Seong;Park, Jun;Kim, Jun Yeong;Park, Sung Wook;Jung, Se Hoon;Sim, Chun Bo
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.26-37
    • /
    • 2022
  • In this paper, images are automatically acquired to control the initial disease of strawberries among facility cultivation crops, and disease analysis is performed using the EfficientNet model to inform farmers of disease status, and disease diagnosis service is proposed by experts. It is possible to obtain an image of the strawberry growth stage and quickly receive expert feedback after transmitting the disease diagnosis analysis results to farmers applications using the learned EfficientNet model. As a data set, farmers who are actually operating facility cultivation were recruited and images were acquired using the system, and the problem of lack of data was solved by using the draft image taken with a cell phone. Experimental results show that the accuracy of EfficientNet B0 to B7 is similar, so we adopt B0 with the fastest inference speed. For performance improvement, Fine-tuning was performed using a pre-trained model with ImageNet, and rapid performance improvement was confirmed from 100 Epoch. The proposed service is expected to increase production by quickly detecting initial diseases.

Analysis of Relationship between Tomato Growth, Vital Response, and Plant-induced Electrical Signal in a Plastic Greenhouse due to Carbon Dioxide Enrichment Treatment (플라스틱 온실 내 이산화탄소 시비에 따른 토마토 생육과 생체 반응 및 Plant-induced Electrical Signal 간 관계 분석)

  • Hee Woong Goo;Gyu Won Lee;Wook Jin Song;Do Hyeon Kim;Hyun Jun Park;Kyoung Sub Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.484-491
    • /
    • 2023
  • Tomatoes in greenhouse are a widely cultivated horticultural crop worldwide, accounting for high production and production value. When greenhouse ventilation is minimized during low temperature periods, CO2 enrichment is often used to increase tomato photosynthetic rate and yield. Plant-induced electrical signal (PIES) can be used as a technology to monitor changes in the biological response of crops due to environmental changes by using the principle of measuring the resistance value, or impedance, within the crop. This study was conducted to investigate the relationship between tomato growth data, vital response, and PIES resulting from CO2 enrichment in greenhouse tomatoes. The growth of tomato treated with CO2 enrichment in the morning was significantly better in all items except stem diameter compared to the control, and PIES values were also higher. The growth of tomato continuously applied with CO2 was better in the treatment groups than control, and there was no significant difference in chlorophyll fluorescence and photosynthesis. However, PIES and SPAD values were higher in the CO2 treatment group than control. CO2 enrichment have a direct relationship with PIES, growth increased, and transpiration increased due to the increased leaf area, resulting in increased water absorption, which appears to be reflected in PIES, which measures vascular impedance. Through this, this study suggests that PIES can be used to monitor crops due to environmental changes, and that PIES is a useful method for non-destructively and continuously monitoring changes of crops.

Development of Multi-Crop Smart Farm Management System for User Convenience based on Lab-View (Lab-View 기반의 사용자 편의성을 위한 다작물 스마트팜 관리 시스템 개발)

  • Hwang, Jung-Tae;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • With the arrival of the fourth industrial era, demand for agriculture is increasing day by day, and smart farm technology, in which computers manage agriculture in line with the current situation, is developing. However, agricultural workers who use it find it difficult to set up and use a management system for smart farms. This paper aims to establish a Lab-View smart farm management system to facilitate the use of a control program for ICT technology farms (hereinafter referred to as smart farms), one of the promising projects of the next industrial revolution. Based on Lab-View, users simply set the type of crops they want to grow, set appropriate temperature/humidity data for each set crop, and collect data in real time through sensors and store it in DB. This functionality maximizes convenience and usability in terms of users.

A Study on Agricultural Drought Monitoring using Drone Thermal and Hyperspectral Sensor (드론 열화상 및 초분광 센서를 이용한 농업가뭄 모니터링 적용 연구)

  • HAM, Geon-Woo;LEE, Jeong-Min;BAE, Kyoung Ho;PARK, Hong-Gi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.107-119
    • /
    • 2019
  • As the development of ICT and integration technology, many changes and innovations in agriculture field are implemented. The agricultural sector has shifted from a traditional industry to a new industrial form called the 6th industry combined with various advanced technologies such as ICT and IT. Various approaches have been attempted to analyze and predict crops based on spatial information. In particular, a variety of research has been carried out recently for crop cultivation and smart farms using drones. The goal of this study was to establish an agricultural drought monitoring system using drones to produce scientific and objective indicators of drought. A soil moisture sensor was installed in the drought area and checked the actual soil moisture. The soil moisture data was used by the reference value to compare and analyze the temperature and NDVI established by drones. The soil temperature by the drone thermal image sensor and the NDVI by the drone hyperspectral was analyzed the correlation between crop condition and soil moisture in study area. To verify this, the actual soil moisture was calculated using the soil moisture measurement sensor installed in the target area and compared with the drone performance. This study using drone drought monitoring system may enhance to promote the crop data and to save time and economy.

A Study on the Monitoring System of Growing Environment Department for Smart Farm (Smart 농업을 위한 근권환경부 모니터링 시스템 연구)

  • Jeong, Jin-Hyoung;Lim, Chang-Mok;Jo, Jae-Hyun;Kim, Ju-hee;Kim, Su-Hwan;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.290-298
    • /
    • 2019
  • The proportion of farm households in the total population is decreasing every year. The aging of rural areas is expected to deepen. The aging of agriculture is continuing due to the aging of the aged population and the decline of the young population, and agricultural manpower shortage is emerging as a threat to agriculture and rural areas. The existing facility cultivation was concentrated on the production / yield per unit area. However, nowadays, not only production but also crop quality should be good so that the quality of crops must be improved because they can secure competitiveness in the market. Therefore, the government plans to increase the productivity by hi-techization of ICT infrastructure horticulture and to plan the dissemination of energy saving smart greenhouse. Therefore, it is necessary to develop a Smart Farm convergence service system based on a hybrid algorithm to enhance diversity and connectivity. Therefore, this study aims to develop smart farm convergence service system which collects data of growth environment of the rhizosphere environment of crops by wireless and monitor smartphone.

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

Hail Risk Map based on Multidisciplinary Data Fusion (다학제적 데이터 융합에 기초한 우박위험지도)

  • Suhyun, Kim;Seung-Jae, Lee;Kyo-Moon, Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.234-243
    • /
    • 2022
  • In Korea, hail damage occurs every year, and in the case of agriculture, it causes severe field crop and cultivation facility losses. Therefore, it is necessary to develop a hail information service system customized for Korea's primary production and crop-growing areas to minimize hail damage. However, the observation of hail is relatively more difficult than that of other meteorological variables, and the available data are also spatially and temporally variable. A hail information service system was developed to understand the temporal and spatial distribution of hail occurrence. As part of this, a hail observation database was established that integrated the observation data from Korea Meteorological Administration with the information from newspaper reports. Furthermore, a hail risk map was produced based on this database. The risk map presented the nationwide distribution and characteristics of hail showers from 1970 to 2018, and the northeastern region of South Korea was found to be relatively dangerous. Overall, hail occurred nationwide, especially in the northeast and some inland areas (Gangwon, Gyeongbuk, and Chungbuk province) and in winter, mainly on the north coast and some inland areas as graupel (small and soft hail). Analyzing the time of day, frequency, and hailstone size of hail shower occurrences by region revealed that the incidence of large hail stones (e.g., 10 cm at Damyang-gun) has increased in recent years and that showers occurred mainly in the afternoon when the updraft was well formed. By integrating multidisciplinary data, the temporal and spatial gap in hail data could be supplemented. The hail risk map produced in this study will be helpful for the selection of suitable crops and growth management strategies under the changing climate conditions.

Effects of genotype and environmental factors on content variations of the bioactive constituents in rice seeds (벼의 유전형질과 재배환경 요인이 기능성물질 함량 변이에 미치는 영향 비교)

  • Soo-Yun Park;Hyoun-Min Park;Jung-Won Jung;So Ra Jin;Sang-Gu Lee;Eun-Ha Kim;Seonwoo Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.429-438
    • /
    • 2022
  • The composition of crops reveal natural variation according to genetic characteristics and environmental factors such as the cultivated regions. For comparative investigation of the impact of genetic difference and environmental influence on the levels of bioactive components in rice seeds, 23 cultivars including indica, japonica, and tongil rice were grown in two location in Korea (Jeonju and Cheonan) for two years (2015 and 2016). Sixteen compounds consisting of tocopherols, tocotrienols, phytosterols, and policosanols were identified from 368 rice samples and the compositional data were subjected to data mining processes including principal component analysis and Pearson's correlation analysis. Under 4 different environmental conditions (Jeonju in 2015, Cheonan in 2015, Jeonju in 2016, Cheonan in 2016), the natural variability of rice seeds showed that the genetic background (indica vs japonica vs tongil) had more impact on the compositional changes of bioactive components compared to the environments. Especially, the results of correlation analysis revealed negative correlation between α-, β-tocopherols and γ-, δ-tocopherols as a representative genetic effect that did not changed by the environmental influence.