• Title/Summary/Keyword: 자재성능

Search Result 198, Processing Time 0.021 seconds

Design of RFID Packaging for Construction Materials (건축자재용 RFID 패키징 설계)

  • Shin, Jae-Hui;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.923-931
    • /
    • 2013
  • RFID (Radio Frequency Identification), which is a kind of the electronic tag, is a wireless access device using the radio frequency for recognizing the ID information. It has a variety of application such as the bus card, gate access card, distribution industry, and management of construction materials. The performance and size of RFID depend on the penetrability, recognition ratio, memory size, multi tag recognition, external pollution dust, and exterior impact, and RFID requires the packaging to protect itself considered above factors. Recently, RFID is diversely employed to effectively manage construction materials and the RFID packaging, which is robust to the external impact, is required to attach RFID on construction materials. In this paper, we propose the construction material RFID packaging designed to be robust for the external impact and to be practicable for change of the broken RFID. For the change of RFID, we separate the cast and body of the packaging. Also, we present the detail drawing for the proposed construction material RFID packaging and implement the performance evaluation of the packaging manufactured using 3D printer.

Assessment of Service Life of Building Materials Based on Performance Degradation (열화성능에 의한 건설자재 수명평가에 관한 연구)

  • Kwon, Young-Il
    • Journal of Applied Reliability
    • /
    • v.6 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • A test method for assessing service life of building materials and components based on performance degradation data is developed. The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. A performance-based test method is developed and a numerical example is provided to illustrate the use of the developed test method.

  • PDF

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

Reading Performance Test of RFID Technology for Curtain Wall Material (커튼월 관련 자재에서 RFID 적용을 위한 인식 성능 테스트)

  • Kim, Yong-Bae;Song, Jae-Hong;Yoon, Soo-Won;Chin, Sang-Yoon;Kwon, Soon-Wook;Kim, Yea-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.176-186
    • /
    • 2008
  • The radio frequency identification (RFID) technology allows various forms of applications in many industries including construction. and in Korea, RFID has already been adopted for the use in daily labor control, logistics monitoring of ready-mix concrete, supply chain management of long-lead items, such as structural steel members and curtain walls. Even though RFID tags have varied reading performances depending on various factors including material of tracking target and surrounding environment, there is no information on how much the reading performance of an RFID tag can be achieved against a specific construction components or materials. Therefore, the objective of this research is to identify the actual reading performance of various RFID technologies and to derive a method to maximize the reading performance for the use in the supply chain management process of curtain wall components.

A Study on Implementation Method of DataBase of Energy Saving Construction Materials (에너지 저감형 건축 자재의 DB 구축 방안 연구)

  • Yang, Dong-Suk;Lee, Do-Heon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.1034-1037
    • /
    • 2013
  • 건축물에서 사용되는 에너지 저감을 위한 노력이 활발히 진행되고 있는 가운데 공동주택 건설시 에너지 저감형 자재를 활용하는 것이 국내 에너지 소비량을 줄이는데 효과적이다. 하지만, 에너지 저감형 자재에 대한 성능 검토 및 시공관련 자료들이 체계화되어 있지 못해 설계 및 시공 시 어려움을 겪고 있다. 이에 따라, 본 연구에서는 공동주택 에너지 저감형 자재의 재료적 특성, 상세도, 시방서 등 설계에서 시공에 이르는 자료들을 DB로 구축하기 위해 효과적인 방안들을 제시하였다.

Proposed Improvements for Type Approval and Inspection Systems of Marine Pollution Prevention Materials and Chemicals (해양오염방제 자재·약제 형식승인 및 검정 개선방안에 대한 연구)

  • Pankil Jang;YeongGu Song;Heejin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Through the revision of the Framework Act on Administrative Regulations (July 17, 2019), the government minimized regulations and applied the comprehensive negative regulation principle to enhance economic vitality. However, a legally mandatory certification system has been applied to marine pollution prevention materials and chemicals, and inspection is conducted every time a product is sold, suppressing the autonomy of manufacturers. In addition, the majority of manufacturers of marine pollution prevention materials and chemicals are small businesses; therefore, they take the approach of producing small quantities of products whenever a buyer requests an order. Consequently, the need for deregulation was raised to ensure autonomy of the market and industry, and improve efficiency in accordance with the current trend of approval, performance test, and inspection systems for marine pollution prevention materials and chemicals. In this study, problems within the current system were identified and improvement plans are proposed through comparison and analysis of domestic and foreign systems.

막소재로서의 고분자의 특성과 재료선택

  • 이영무;하성룡
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.49-80
    • /
    • 1998
  • 다른 프로세스와의 경쟁력확보를 위해서는 막소재의 혁신적인 성능향상이 수반되어야 한다. 그러므로 막소재의 물성에 대한 고찰이 필요한데, 이는 고분자재료의 고유한 성질에 \ulcorner랴 분리막의 성능이 좌우되기 때문이다. 막재료로서의 고분자의 성질은 매우 여러 가지가 있지만 본 고에서는 막분리성능에 크게 관련되는 고분자의 물성 및 종류에 대해 논하겠다.

  • PDF

An Experimental Study on the Axial Strength of Centrifugall Formed Shell PC Columns (원심성형 중공PC기둥의 압축 실험)

  • Park, Jin-Young;Yang, Won-Jik;Yi, Waon-Ho;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.37-40
    • /
    • 2008
  • Recently, Construction Business, is changing very quickly, exceedingly needs to slim down the construction expensive by reducing material costs and the term of works. The term of formwork takes 25% of the term of works and costs 15% to 20% of the cost of construction. Hereupon, the purpose of this study is to investigate the Axial Strength of Centrifugall Formed Shell PC Columns that can reduce the term of formwork, the costs of material, the difficulty of throwing away the waste. Shell PC Column is loaded stirrups and manufactured at factory, so it has good points like construction's quality control and part's precision. However, it needs to be tested for checking bonded ability because it is set up at core and coverd with concrete. therefore this study is necessary three type of columns, which are a RC column, different type of two compressive strength core concrete columns and a Shell PC Column. By three columns, this study compare with and analysis three columns's bonded and Compressive Behavior abilities.

  • PDF

Invention Methodology of High Strength Insulated Steel Stud using TRIZ (강도향상형 단열스터드 개발을 위한 트리즈 기법 활용방안)

  • Cho, Bong-Ho;Kim, Sun-Sook;Kwak, Chai-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.33-41
    • /
    • 2013
  • This study used TRIZ methodology to develop a new steel stud for load bearing or non-load bearing walls. Technical contradiction of high strength with high insulation performance can be solved by TRIZ. We suppose a new shape of high-strength insulated (HSI) Stud. This study showed TRIZ can be usefully applied to the development of new construction materials by solving technical contradictions. Insulation performance of HSI stud can be improved approximately 12% compared to the standard KS stud. Although up to 3.9% of the flexural strength degradation is expected, compressive strength of HSI studs are improved from 4.1% to 8%. In conclusion, improved thermal performance and higher strength can be expected for the HSI stud developed using TRIZ.