• Title/Summary/Keyword: 자율 항법

Search Result 114, Processing Time 0.036 seconds

Design of Navigation Controller for Autonomous Mobile Robots using Kalman Filter (칼만필터를 사용한 자율주행로봇의 항법제어기 설계)

  • Choi, Kwang-Sup;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1807-1808
    • /
    • 2008
  • When it is used for autonomous mobile robots by using dead-reckoning system, odometry system with encorder is the simplest method as well as well-known in the industry. However, odometry system is reflected slide, friction and mechanical errors of wheels when operating the position estimation. And also in order to minimize errors of direction angle which is the most important factor that it is designed the controller in controlling kinematics and quadratic curve, PID that came into the values of sensor fusion with encorder and gyroscope sensor. After designing, the autonomous mobile robot is producted practically and inspected how it works.

  • PDF

Hydrodynamics Embedded Navigation Filter Design for Underwater Autonomous Systems (수중 자율이동시스템의 수력학 모델 내장형 항법필터 설계)

  • Kim, Eun-Chong;Lee, Yun-Ha;Jung, Young-Kwang;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1383-1384
    • /
    • 2015
  • In this paper, a dynamics model embedded navigation filter is newly suggested for underwater autonomous systems without position or attitude aid. In order to ensure the observability on the INS errors, the hydrodynamics of the underwater vehicle is incorporated with the INS attitude error. This approach allows us to estimate and compensate the INS errors in spite of using external velocity sensor. Through the simulation, the performance and effectiveness of the proposed scheme are demonstrated.

  • PDF

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

Research on Structure Design of Ground Control Station for Waypoint based-UAV Flight (웨이포인트 기반 UAV 비행을 위한 Ground Control Station 구조 설계 연구)

  • Sim, Guichang;Kwak, Jeonghoon;Jeong, Young-Sik;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.675-678
    • /
    • 2016
  • 최근 무인항공기 (Unmanned Aerial Vehicel, UAV)는 장점인 빠른 이동속도와 장착된 카메라를 이용하여 넓은 지역을 감시하기 위해서 활용되고 있다. 하지만, 조종사가 UAV를 직접 조종하여 넓은 지역을 비행하기에는 많은 비용이 발생한다. UAV가 자율적으로 넓은 지역을 비행하는 방법이 요구된다. 이 논문은 웨이포인트를 기반으로 UAV를 비행시키기 위한 Ground Control Station (GCS)의 구조를 제안한다. 비행할 웨이포인트는 위성항법시스템(Global Positioning System, GPS) 기반으로 설정하고 제안한 구조를 기반으로 다양한 임무 수행을 위해 다수의 비행 알고리즘을 정의하여 UAV를 비행시킨다. 부가적으로, 웨이포인트 기반으로 UAV를 비행시키기 위한 사용자 인터페이스도 소개한다.

GA-Fuzzy based Navigation of Multiple Mobile Robots in Unknown Dynamic Environments (미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법)

  • Zhao, Ran;Lee, Hong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • The work present in this paper deals with a navigation problem for multiple mobile robots in unknown indoor environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. The environments simulated in this work are dynamic ones which contain not only static but also moving obstacles. In order to guide the robot to move along a collision-free path and reach the goal, this paper presented a navigation method based on fuzzy approach. Then genetic algorithms were applied to optimize the membership functions and rules of the fuzzy controller. The simulation results verified that the proposed method effectively addresses the mobile robot navigation problem.

A local path planning algorithm for free-ranging mobil robot (자율 주행로봇을 위한 국부 경로계획 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.88-98
    • /
    • 1994
  • A new local path planning algorithm for free-ranging robots is proposed. Considering that a laser range finder has the excellent resolution with respect to angular and distance measurements, a simple local path planning algorithm is achieved by a directional weighting method for obtaining a heading direction of nobile robot. The directional weighting method decides the heading direction of the mobile robot by estimating the attractive resultant force which is obtained by directional weighting function times range data, and testing whether the collision-free path and the copen parthway conditions are satisfied. Also, the effectiveness of the established local path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Estimation of Optimal Empirical Equations based on Sediments of Ageing Reservoir Estimated Using Autonomous Navigation USV (자율항법 무인측량선을 이용하여 산정된 노후저수지의 퇴사량 기준 최적경험식 산정)

  • Won, Chang-Hee;Yoon, HyeonCheol;kim, Won-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • Acritical function of a nation is to protect its people's lives and properties from natural disasters such as a drought. A drought affects many aspects of human life, including social, economic, and industrial activities. Approximately 75.7% of reservoirs in Korea are over 50 years old.Sedimentation over the years may have caused a situation where storage capacity of the reservoirs is no longer sufficient and compliant with the original reservoir specifications. This study analyzes storage capacities for ten aged reservoirs using the autonomous navigation USV. It compares these capacities with sediment estimated by conventional empirical equations. Comparisons were made to the original specifications for the reservoirs.Storage capacity of six reservoirs decreased in a range between 16.2%-55.3% and storage capacity of 4 reservoirs increased in a range between 1.5%-380.2%. This data was compared to data derived from estimating sediment by empirical equations. Yoon's equation(1982) appeared more accurate than Sur's equation(1988) in Uhlinzi and Yongpo reservoirs, and Sur's equation(1988), however, appeared more accurate than Yoon's equation in Daegok, Ugok2 and Ochi reservoirs. The significant ranges of sedimentation shown in this study suggest that it is worth continuously surveying reservoirs to ensure their efficient management and operation.

Magnetic Markers-based Autonomous Navigation System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량을 위한 자기표지 기반 무인 자율주행 시스템)

  • Byun, Yeun-Sub;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.297-304
    • /
    • 2015
  • Recently, the demand for a PRT(Personal Rapid Transit) system based on autonomous navigation is increasing. Accordingly, the applicability investigations of the PRT system on rail tracks or roadways have been widely studied. In the case of unmanned vehicle operations without physical guideways on roadways, to monitor the position of the vehicle in real time is very important for stable, robust and reliable guidance of an autonomous vehicle. The Global Positioning System (GPS) has been commercially used for vehicle positioning. However, it cannot be applied in environments as tunnels or interiors of buildings. The PRT navigation system based on magnetic markers reference sensing that can overcome these environmental restrictions and the vehicle dynamics model for its H/W configuration are presented in this study. In addition, the design of a control S/W dedicated for unmanned operation of a PRT vehicle and its prototype implementation for experimental validation on a pilot network were successfully achieved.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

The Development of a Multi-sensor Payload for a Micro UAV and Generation of Ortho-images (마이크로 UAV 다중영상센서 페이로드개발과 정사영상제작)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1645-1653
    • /
    • 2014
  • In general, RGB, NIR, and thermal images are used for obtaining geospatial data. Such multiband images are collected via devices mounted on satellites or manned flights, but do not always meet users' expectations, due to issues associated with temporal resolution, costs, spatial resolution, and effects of clouds. We believe high-resolution, multiband images can be obtained at desired time points and intervals, by developing a payload suitable for a low-altitude, auto-piloted UAV. To achieve this, this study first established a low-cost, high-resolution multiband image collection system through developing a sensor and a payload, and collected geo-referencing data, as well as RGB, NIR and thermal images by using the system. We were able to obtain a 0.181m horizontal deviation and 0.203m vertical deviation, after analyzing the positional accuracy of points based on ortho mosaic images using the collected RGB images. Since this meets the required level of spatial accuracy that allows production of maps at a scale of 1:1,000~5,000 and also remote sensing over small areas, we successfully validated that the payload was highly utilizable.