Journal of the Korean Society for Aeronautical & Space Sciences
/
v.45
no.8
/
pp.647-661
/
2017
This paper presents a robust method for autonomously landing on small bodies. Autonomous landing is accomplished by generating and following reference position and attitude profiles. The position and attitude tracking controllers are based on discrete sliding mode control, which explicitly treats the discrete and impulsive natures of thruster operation. Vision-based inertial navigation is used for autonomous navigation for landing. Numerical simulation is carried out to evaluate the performance of the proposed method in a realistic situation with environmental uncertainties.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.15-18
/
2023
UAV는 군사용을 처음 시작으로 근래에 취미용 드론의 급격한 성장과 더불어 최근 기후변화, 교통혼잡, 범죄 예방 등 여러 사회 문제 해결을 위한 드론의 필요성이 증가함에 따라 건설, 교통, 농업, 에너지, 엔터테인먼트 등 다양한 산업과 여러 사회 서비스로 그 필요성이 확대되고 있다. 본 연구는 이러한 사회적 흐름에 따라 인공지능 기술을 통한 드론의 활용성을 확대하고 GPS 수신이 안 되는 환경에서 딥러닝 객체 탐지 모델을 활용한 자율 착륙을 연구를 목표로 한다. GPS 신호는 실내와 같은 환경 혹은 지하, 교량 아래, 산속 등과 같은 곳에서는 수신이 어렵다. 이를 극복하고자 GPS 신호수신이 어려운 지역에서 GPS 수신기를 통해 받는 위치 정보 대신 드론에 장착된 카메라를 통해 전달받는 영상에서 착륙할 지점을 인식하고 카메라를 통해 받는 영상 정보만 이용하여 목표지점으로 하강하는 방식으로 자율 착륙을 유도한다. 딥러닝 중 경량화 모델을 활용하여 소형 드론에서 실시간으로 착륙 지점을 감지하기 위해 최적화 과정을 진행해 실시간 자율 착륙이 가능하게 하였다. 본 연구를 통해 드론의 착륙에 있어 GPS 수신기와 사람의 조종에 대한 의존도를 낮출 수 있을 것으로 기대한다.
Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.
Myeong-Chul Park;Gyung-Hwan Kim;Ji-Hyeong Lee;Seung-Jae Hong;Chang-Hyeon Baek;Jin-Hyeun Seok;Min-kyeong kim;Dong-Bin Lee
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.269-270
/
2024
최근 드론 산업의 규모가 커지면서 드론을 다양한 분야에 활용하려는 노력이 커지고 있다. 대규모 환경 모니터링, 재난 관리 등에 사용되기 위해서는 장시간 연속 비행이 필요하지만 드론의 배터리 용량 문제로 인해 사람이 직접 배터리를 교체해 주지 않으면 장시간 비행이 어렵다. 본 논문은 드론이 배터리 충전을 위해 자율적으로 착륙해 충전 후 이륙하는 가로등을 활용한 자율 충전 스테이션'을 제안한다. 단순한 무선 충전이 아닌 드론이 자율 비행을 통해 스테이션에 착륙하고 스테이션의 초음파 센서를 통해 착륙이 감지되면 스테이션의 송신부에서 전력을 공급해 드론의 무선 충전이 가능하다. 또한 스테이션의 구조를 원뿔형으로 만들어 드론이 스테이션의 중앙에 정확히 안착되도록 하였다. 자율 드론 충전 스테이션을 통해 배터리 용량 문제를 새로운 방식으로 해결할 수 있고, 업무에 필요한 인력을 최소화함으로서 드론 관제, 환경 모니터링 등 드론을 활용하는 다양한 분야에 도움을 줄 수 있을 것이다.
Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.45
no.9
/
pp.734-745
/
2017
The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.
In case of unmanned aerial vehicles used in modern society, there has been a problem where a human operator should be still needed to control the UAV because of a lower level of autonomy. In this paper, genetic algorithm is selected as a methodology for the autonomy accomplishment and then we verify a possibility of UAV autonomy by applying the GA. The landing is one of the important classical tasks on aerial vehicle and the lunar Landing is one of the most historical events. Autonomy possibility of computer-simulated UAV is verified by landing autonomy method of a falling body equipped with a propulsion system similar to the lunar Lander. When applying the GA, the genom is encoded only with 4 actions (left-turn, right-turn, thrust, and free-fall) and applied onto the falling body, Then we applied the major operations of GA and achieved a success experiment. A major contribution is to construct a simulated UAV where an autonomy of UAV can be accomplished while minimizing the sensor dependency. Also we implemented a test-bed where the possibility of autonomy accomplishment by applying the GA can be verified.
The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.
Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.
Researchers are now faced with a limited flight time of the hoverable UAV due to the sluggish technological advances of the Li-Po energy density and try to find a bypassing solution for the fully autonomous hoverable UAV mission planning. Although there are several candidate solutions, automated wireless charging is the most likely and realistic candidate and we are focusing on the autolanding strategy of the hoverable UAV in this paper since it is the main technology of it. We developed a hoverable UAV flight simulator including Li-Po battery pack simulator using MATLAB/Simulink and UAV flight and battery states are analyzed. The maximum motor power measured as 1,647 W occurs during the takeoff and cell voltage decreases down to 3.39 V during the procedure. It proves that the two Li-Po battery packs having 22 Ah and connected in series forming 12S1P are appropriate for the autolanding mission planning.
The delivery using drones has been attracting attention because it can innovatively reduce the delivery time from the time of order to completion of delivery compared to the current delivery system, and there have been pilot projects conducted for safe drone delivery. However, the current drone delivery system has the disadvantage of limiting the operational efficiency offered by fully autonomous delivery drones in that drones mainly deliver goods to pre-set landing sites or delivery bases, and the final delivery is still made by humans. In this paper, to overcome these limitations, we propose obstacle detection and landing site selection algorithm based on a vision sensor that enables safe drone landing at the delivery location of the product orderer, and experimentally prove the possibility of station-to-door delivery. The proposed algorithm forms a 3D map of point cloud based on simultaneous localization and mapping (SLAM) technology and presents a grid segmentation technique, allowing drones to stably find a landing site even in places without prior information. We aims to verify the performance of the proposed algorithm through streaming data received from the drone.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.