• Title/Summary/Keyword: 자율형 수중로봇

Search Result 7, Processing Time 0.021 seconds

Development of Underwater-type Autonomous Marine Robot-kit (수중형 자율운항 해양로봇키트 개발)

  • Kim, Hyun-Sik;Kang, Hyung-Joo;Ham, Youn-Jae;Park, Seung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2012
  • Recently, although the need of marine robots being raised in extreme areas, the basis is very deficient. Fortunately, as the robot competition is vitalizing and the need of the robot education is increasing, it is desirable to establish the basis of the R&D and industrialization of marine robots and to train professionals through the development and diffusion of marine robot kits. However, in conventional case, there is no underwater-type autonomous marine robot kit for the marine robot competition, which has the abilities of the underwater locomotion and target detection and avoidance. To solve this problem, a marine robot kit which has the abilities of the underwater locomotion, the waterproof and the weight adjustment, is developed. To verify the performance of the developed kit, test and evaluation such as surge, pitch, yaw, obstacle avoidance is performed. The test and evaluation results show that the possibility of the real applications of the developed kit.

An Autonomous Navigation System for Unmanned Underwater Vehicle (무인수중로봇을 위한 지능형 자율운항시스템)

  • Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2007
  • UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

Development of Balloon-based Autonomous Airborne Robot-kit (풍선기반 자율형 공중로봇키트 개발)

  • Kim, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1213-1218
    • /
    • 2013
  • Recently, although the need of marine robots such as the underwater robot, surface robot and airborne robot being raised in extreme areas, the basis is very deficient. Fortunately, as the need of the robot education is increasing, it is desirable to establish the R&D basis of marine robots and to train future talents through the development and diffusion of marine robot kits. However, in conventional case, there is no marine robot-kit based on the balloon, which has the abilities of the airborne locomotion and obstacle avoidance. To solve this problem, a balloon-based autonomous airborne robot-kit that has the ability of the obstacle avoidance with an infrared sensor, is developed. The test and evaluation results show the possibility of the real applications and the necessity of additional work.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations (생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

A Study on Surface Ships Collision Avoidance Based on Collision Prediction (충돌예측 기반 선박 충돌회피모델에 관한 연구)

  • 김창민;김용기;최중락
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.47-50
    • /
    • 2002
  • 산업이 발달함에 따라 대량의 화물을 빠르게 운반할 수 있는 해상운송수단의 수요가 증가하게 되고 이로 인하여 해상 선박 간 충돌사고가 빈번히 발생하게 되었다 선박 충돌은 주로 조선하는 사람들의 관습, 습관의 차이, 부주의, 판단오류 등의 이유로 발생한다. 연구자들은 선박 충돌을 방지하기 위하여 조선에 관련된 많은 부분을 지능화한 지능형 충돌회피시스템 개발에 노력을 기울이고 있다. 선박을 비롯한 자율운동체의 충돌방지 기법은 비행체, 수중운동체, 자율로봇 등 영역 특성을 달리하는 다양한 분야에서 연구되어오고 있다 기존 연구들의 충돌방지는 주로 장애물의 공간적 특성에 기반하고 있다. 이에 개체의 움직임을 예측하여 시간적 요소를 가미하면 더욱 향상된 충돌방지가 가능하다. 특히, 선박은 느린 운동 특성과 조선법, 규격화된 통신수단의 발달로 인하여 상대편 선박의 이동 예측이 용이하므로 이를 적용하여 보다 향상된 충돌방지가 가능하다. 본 연구에서는 기존의 충돌회피기법의 과정에 예측을 추가한 예측기반 충돌회피모형을 제안하고 선박운항환경을 모의실험에 의하여 해당 모형 적용시 충돌회피 경로 산출의 안전성이 크게 개선됨을 보인다.

  • PDF