• Title/Summary/Keyword: 자율주행 차

Search Result 318, Processing Time 0.021 seconds

Long-term Growth Strategy of a Personal Service Robot Company: Focusing on the Case of Everybot (개인서비스용 로봇기업의 장기 성장전략: 에브리봇 사례를 중심으로)

  • Soo-Jung, Oh;So-Hyung, Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.127-134
    • /
    • 2022
  • With the recent advent of the Fourth Industrial Revolution, the importance of the platform business is increasing. Most global companies with high market value are known as platform companies. This change is changing the business model of companies in various industries. However, existing studies have mainly focused on information-intensive industries and large companies. Therefore, this study attempted to analyze the case of Everybot, which is successfully growing in the service robot industry. Everybot is known as a company that produces robot cleaners. However, according to the result, the company has focused on developing autonomous driving technologies and pursuing platform-based business strategies rather than product-based ones. The results of this study have theoretical and practical implications by showing how domestic small and medium-sized robot companies apply platform-based business strategies to achieve long-term growth with gaining leadership in the personal service robotics market.

A Case Study of Artificial Intelligence Education for Graduate School of Education (교육 대학원에서의 인공지능 교육 사례)

  • Han, Kyujung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.401-409
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

  • PDF

Analysis of Low-power-based Communication Technology to Build a Mobility Connected System (모빌리티 커넥티드 시스템 구축을 위한 저전력 기반 통신 기술 분석)

  • Sung-goo Yoo;Ju-yeon Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.33-38
    • /
    • 2024
  • The importance of connected technology that connects products or systems is increasing. Connected technology is a concept that can communicate with surrounding objects and connect to each other through a network to operate as one system. In particular, it can be implemented using wireless communication, and various conditions are required depending on the application system, such as communication distance and speed. In this study, we analyzed trends in communication technology for the implementation of connectivity between mobility devices such as self-driving cars, drones, UAVs, and shared mobility devices. The communication distance, speed, wired and wireless status, etc. of the latest communication methods currently commercialized or under development were investigated, with a particular focus on low-power operation. We identified the element technologies needed to build a low-power long-distance communication (LPWAN) system, and initially developed a plan for constructing a connected drone. The analysis results showed that it was possible to implement a connected system using the LoRa system, and an example configuration method was presented.

Improving Compatibility Method of New Vworld 3D Data Using the Serialization Technique (데이터 직렬화 기법을 활용한 차세대 브이월드 3차원 데이터의 호환성 개선 방안)

  • KANG, Ji-Hun;KIM, Hyeon-Deok;KIM, Jeong-Taek
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.96-105
    • /
    • 2018
  • The V-world, Spatial information open platform map service, provides various national spatial data. Recently, with the development of IT technology, demand for 3D geospatial data that can be merged with new industries such as Internet of Things(IoT) and autonomous vehicles is increasing. Because 3D geospatial data is large and complex, many computer resources are used to provide map services. Most of the 3D map services, such as Vworld, are constructed binary data in consideration of performance. However, this type of data is incompatible because it is difficult to use in other services if there is no precise understanding of the specification. In this paper, we propose a data serialization method to improve the compatibility of new Vworld 3D format which is constructed in binary form. The performance of binary data and serialized binary data is tested and compared. As a result, it is expected that the data using the serialization technique will be similar to the binary data and contribute to improve compatibility.

Vehicle Localization Method for Lateral Position within Lane Based on Vision and HD Map (비전 및 HD Map 기반 차로 내 차량 정밀측위 기법)

  • Woo, Rinara;Seo, Dae-Wha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.186-201
    • /
    • 2021
  • As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.

Research on Longitudinal Slope Estimation Using Digital Elevation Model (수치표고모델 정보를 활용한 도로 종단경사 산출 연구)

  • Han, Yohee;Jung, Yeonghun;Chun, Uibum;Kim, Youngchan;Park, Shin Hyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.84-99
    • /
    • 2021
  • As the micro-mobility market grows, the demand for route guidance, that includes uphill information as well, is increasing. Since the climbing angle depends on the electric motor uesed, it is necessary to establish an uphill road DB according to the threshold standard. Although road alignment information is a very important element in the basic information of the roads, there is no information currently on the longitudinal slope in the road digital map. The High Definition(HD) map which is being built as a preparation for the era of autonomous vehicles has the altitude value, unlike the existing standard node link system. However, the HD map is very insufficient because it has the altitude value only for some sections of the road network. This paper, hence, intends to propose a method to generate the road longitudinal slope using currently available data. We developed a method of computing the longitudinal slope by combining the digital elevation model and the standard link system. After creating an altitude at the road link point divided by 4m based on the Seoul road network, we calculated individual slope per unit distance of the road. After designating a representative slope for each road link, we have extracted the very steep road that cannot be climbed with personal mobility and the slippery roads that cannot be used during heavy snowfall. We additionally described errors in the altitude values due to surrounding terrain and the issues related to the slope calculation method. In the future, we expect that the road longitudinal slope information will be used as basic data that can be used for various convergence analyses.

Predicting Carbon Dioxide Emissions of Incoming Traffic Flow at Signalized Intersections by Using Image Detector Data (영상검지자료를 활용한 신호교차로 접근차량의 탄소배출량 추정)

  • Taekyung Han;Joonho Ko;Daejin Kim;Jonghan Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.115-131
    • /
    • 2022
  • Carbon dioxide (CO2) emissions from the transportation sector in South Korea accounts for 16.5% of all CO2 emissions, and road transportation accounts for 96.5% of this sector's emissions in South Korea. Hence, constant research is being carried out on methods to reduce CO2 emissions from this sector. With the emerging use of smart crossings, attempts to monitor individual vehicles are increasing. Moreover, the potential commercial deployment of autonomous vehicles increases the possibility of obtaining individual vehicle data. As such, CO2 emission research was conducted at five signalized intersections in the Gangnam District, Seoul, using data such as vehicle type, speed, acceleration, etc., obtained from image detectors located at each intersection. The collected data were then applied to the MOtor Vehicle Emission Simulator (MOVES)-Matrix model-which was developed to obtain second-by-second vehicle activity data and analyze daily CO2 emissions from the studied intersections. After analyzing two large and three small intersections, the results indicated that 3.1 metric tons of CO2 were emitted per day at each intersection. This study reveals a new possibility of analyzing CO2 emissions using actual individual vehicle data using an improved analysis model. This study also emphasizes the importance of more accurate CO2 emission analyses.

An Empirical Study on Defense Future Technology in Artificial Intelligence (인공지능 분야 국방 미래기술에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan;Yun, Il-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • Artificial intelligence, which is in the spotlight as the core driving force of the 4th industrial revolution, is expanding its scope to various industrial fields such as smart factories and autonomous driving with the development of high-performance hardware, big data, data processing technology, learning methods and algorithms. In the field of defense, as the security environment has changed due to decreasing defense budget, reducing military service resources, and universalizing unmanned combat systems, advanced countries are also conducting technical and policy research to incorporate artificial intelligence into their work by including recognition systems, decision support, simplification of the work processes, and efficient resource utilization. For this reason, the importance of technology-driven planning and investigation is also increasing to discover and research potential defense future technologies. In this study, based on the research data that was collected to derive future defense technologies, we analyzed the characteristic evaluation indicators for future technologies in the field of artificial intelligence and conducted empirical studies. The study results confirmed that in the future technologies of the defense AI field, the applicability of the weapon system and the economic ripple effect will show a significant relationship with the prospect.

Analysis of domestic and foreign future automobile research trends based on topic modeling (토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로)

  • Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.463-476
    • /
    • 2022
  • After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

A study on the Construction of a Big Data-based Urban Information and Public Transportation Accessibility Analysis Platforms- Focused on Gwangju Metropolitan City - (빅데이터 기반의 도시정보·접대중교통근성 분석 플랫폼 구축 방안에 관한 연구 -광주광역시를 중심으로-)

  • Sangkeun Lee;Seungmin Yu;Jun Lee;Daeill Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.49-62
    • /
    • 2022
  • Recently, with the development of Smart City Solutions such as Big data, AI, IoT, Autonomous driving, and Digital twins around the world, the proliferation of various smart devices and social media, and the record of the deeds that people have left everywhere, the construction of Smart Cities using the "Big Data" environment in which so much information and data is produced that it is impossible to gauge the scale is actively underway. The Purpose of this study is to construct an objective and systematic analysis Model based on Big Data to improve the transportation convenience of citizens and formulate efficient policies in Urban Information and Public Transportation accessibility in sustainable Smart Cities following the 4th Industrial Revolution. It is also to derive the methodology of developing a Big Data-Based public transport accessibility and policy management Platform using a sustainable Urban Public DB and a Private DB. To this end, Detailed Living Areas made a division and the accessibility of basic living amenities of Gwangju Metropolitan City, and the Public Transportation system based on Big Data were analyzed. As a result, it was Proposed to construct a Big Data-based Urban Information and Public Transportation accessibility Platform, such as 1) Using Big Data for public transportation network evaluation, 2) Supporting Transportation means/service decision-making based on Big Data, 3) Providing urban traffic network monitoring services, and 4) Analyzing parking demand sources and providing improvement measures.