• Title/Summary/Keyword: 자율군집

Search Result 82, Processing Time 0.027 seconds

A Comparative Study on Statistical Clustering Methods and Kohonen Self-Organizing Maps for Highway Characteristic Classification of National Highway (일반국도 도로특성분류를 위한 통계적 군집분석과 Kohonen Self-Organizing Maps의 비교연구)

  • Cho, Jun Han;Kim, Seong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.347-356
    • /
    • 2009
  • This paper is described clustering analysis of traffic characteristics-based highway classification in order to deviate from methodologies of existing highway functional classification. This research focuses on comparing the clustering techniques performance based on the total within-group errors and deriving the optimal number of cluster. This research analyzed statistical clustering method (Hierarchical Ward's minimum-variance method, Nonhierarchical K-means method) and Kohonen self-organizing maps clustering method for highway characteristic classification. The outcomes of cluster techniques compared for the number of samples and traffic characteristics from subsets derived by the optimal number of cluster. As a comprehensive result, the k-means method is superior result to other methods less than 12. For a cluster of more than 20, Kohonen self-organizing maps is the best result in the cluster method. The main contribution of this research is expected to use important the basic road attribution information that produced the highway characteristic classification.

Methodology for Determining Promising Freeway Segments for Truck Platooning (고속도로 화물차 군집주행 적용구간 선정 연구)

  • JO, Young;KWON, Kyeongjoo;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.98-111
    • /
    • 2018
  • Truck platooning, which is a cluster of trucks in support of vehicle-to-vehicle communication and automated longitudinal vehicle control, is a promising method to both operational efficiency and prevent traffic crashes. Although a variety of studies have been conducted to identify the effects of vehicle platooning on traffic stream, we are not aware of any study attempting to identify promising road segments for vehicle platooning. This study aims to develop a methodology for determining the priority of freeway segments that would potentially lead to maximize the effectiveness of truck platooning. Evaluation measures derived in this study includes truck crash rates, the percentage of truck traffic, segment length, and the number of entry and exit points. Weighting values obtained from an analytical hierarchical process (AHP) method were applied to compute the proposed priority score to determine better freeway segment for truck platooning. Results suggested that a 46.9km freeway segment, from Sacheon IC to Sanin JC, was the most promising segment for maximizing the effectiveness of truck platooning. It is expected that the outcome of this study would be effectively used as a fundamental to establish operational strategies for truck platooning.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

A Study on the Determining Appropriate Truck and Commodity Types for V2X-based Truck Platooning (V2X 기반 군집주행을 위한 적정 화물차 및 품목 선정 기초연구)

  • Ryu, Seungkyu;Choi, Yoon-Hyuk;Jeong, Harim;Kwon, Bongkyung;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • To improve traffic congestion, reduce fuel consumption, and improve the stability of truck operations, truck platooning, in which several trucks are organized in a single platoon, is being actively researched globally. Compared to the operation of a single truck, the operation of a truck platoon requires more caution before the actual operation because an accident of one vehicle in the platoon can lead to an accident with all the vehicles in the platoon. Therefore, this study examined the types of trucks and cargo suitable for truck platooning to prevent safety accidents. The review showed that a closed-van-type truck is appropriate for truck platooning to prevent falling objects during driving. In the case of cargo types, it is necessary to exclude liquids and dangerous goods defined in related laws from truck platooning.

Analysis of the Effects of the Truck Platooning Using a Meta-analysis (메타분석을 이용한 화물차 군집주행의 효과 분석)

  • Kim, Yejin;Jeong, Harim;Ko, Woori;Park, Joong-gyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • The platooning refers to a form in which one or more following vehicles along the path of the leading vehicle(directly driven by the driver) drive in one platoon using V2V, V2I communication and vehicle-mounted sensor. Platooning has emerged in line with the increasing demand for cargo volume and advanced transportation logistics systems, and is expected to have effects such as increasing capacity, reducing labor costs, and reducing fuel consumption. However, compared to general passenger cars, research on autonomous driving of trucks and verification of their effects are insufficient. Therefore, in this study, meta-analysis was conducted on the theme of the effect of truck platooning, and the results of existing studies related to platooning effects were integrated into one reliable, generalized, and objective summary estimate. In conclusion, it was analyzed that the introduction of truck platooning would have an effect of 13.93% increase in capacity, 38.76% decrease in conflict, and 8.13% decrease in fuel consumption.

생체모방 자율제어 네트워크 환경 구현 연구 동향 : Programming Protocol-Independent Packet Processors 기술 개요

  • Jin, Jeong-Ha;Kim, Gi-Cheon
    • Information and Communications Magazine
    • /
    • v.33 no.5
    • /
    • pp.3-11
    • /
    • 2016
  • 자연계에서 존재하는 다양한 생명체는 자신들의 생존과 종의 번성을 위해 효율적인 행동 규칙을 만들어 진화해 왔다. 이러한 생명체의 다양한 생존원리로부터 착안을 하여 자연계가 아닌 다른 환경에서 적용이 가능하도록 알고리즘을 만들어 적용시키는 것을 생체모방 알고리즘이라 한다. 자연계의 환경자체가 불확실한 변화가 다양하게 포함되고 있으며, 제한된 자원 환경을 어떻게 효율적으로 활용하는가의 문제가 걸려 있음으로 인하여 이러한 생체모방 알고리즘은 적용환경의 변환에 빠른 적응력을 제공할 수 있고, 자원 제약형 환경에서 안정적으로 확장성과 적응성을 제공할 수 있어서 상호 운용성 측면에서 많은 이득을 줄 수 있다. 이와 같은 생체모방 알고리즘을 네트워크의 관점에서 적용시켜 보면, 전자의 경우에는 자율적인 네트워크 구성을 용이하게 제공할 수 있음을 나타내고, 후자의 경우에는 IoT 환경과 같은 자원 제약형 환경에서의 상호 운용성을 제공할 수 있다. 이렇듯이 생체모방 알고리즘을 네트워크에 접목시켜 연구하는 것은 최근의 네트워크 분야의 연구 이슈와 상호 보완적으로 작용하여 시너지 효과를 제공할 수 있다. 자연계의 군집 현상 및 동기화 현상을 네트워크 환경에서 적용하여 사용할 수 있는 생체모방 알고리즘 기술은 다양하게 존재하고 있으며 이를 활용하는 연구를 통해 SDN(Software Defined Networking)에서의 자율제어 네트워크 구성에 접목하거나 IoT 환경과 같은 자원 제약형 환경에서의 보다 효율적인 상호 연결성을 제공하는 방향으로 발전할 수 있다. 이러한 생체모방 자율제어 네트워크 환경 구현을 위해 기존의 OpenFlow 환경과 새로이 부각되는 P4: Programming Protocol-Independent Packet Processors 기술에 대해서 정리하여 향후 생체모방 자율제어 네트워크 구현 방안을 제시하고자 한다.

Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's (실내 환경에서의 AR.Drone 군집 비행 시스템 개발)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck;Rew, DongYoung;Gong, HyunCheol
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, small quadcopters have been widely used in various areas ranging from military to entertainment applications because interest in the quadcopter increases. Especially, the research on swarm flight which control quadcopters simultaneously without any collision can increase success probability of a important mission. In addition the swarm flight can be applied for demonstrating choreographed aerial maneuvers such as dancing and playing musical instruments. In this paper, we introduce multiple AR.Drone control system based on motion capture for indoor environment in which quadcopters can recognize current position each other and perform scenario based mission.

Impacts of Automated Vehicles on Traffic Flow Changes (자율주행자동차 도입으로 인한 교통흐름 변화 분석)

  • Jung, Seung weon;Moon, Young jun;Lee, Sung Yeol;Hwang, Kee Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.244-257
    • /
    • 2017
  • Traffic congestion occurs from drivers' human factors such as driver reaction time, reckless lane change, and inexperienced driving. When Automated Vehicles are introduced, human factors are excluded, resulting in increased average vehicle speed, stabilizing traffic flow, and increasing road capacity. This study analyzed traffic flow changes through traffic volume-speed-density plots, and increased road capacity due to Automated Vehicles. As a result of the analysis, when rate of automated vehicles gests higher, the traffic flow became stable. Additionally, it was analyzed that when all vehicles were automated, the road capacity increased by about 120 %. It is expected that there will be a positive expectation in terms of traffic congestion and traffic demand management due to the introduction of Automated Vehicles.

Analysis of the Effect of Autonomous Driving of Waste Vehicles on CO2 Emission using Macroscopic Model (거시모형을 이용한 폐기물 차량 자율주행이 이산화탄소 배출량에 미치는 영향 분석)

  • Yoon, Byoungjo;Hong, Kiman
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • Purpose: The purpose of this study is to quantitatively present the carbon dioxide(CO2) emission change according to the application of autonomous driving technology at the network level for waste vehicles in the metropolitan area. Method: The target year was set to 2030, and the analysis method estimated the carbon dioxide (CO2) emissions for each road link through user equilibrium assignment when unapplied scenario. The application scenario performed traffic assignment using route data on the premise that the group was running in accordance with the application of autonomous driving technology to waste vehicles. In addition, the other means estimated the carbon dioxide emissions through user balance allocation by reflecting the results of the waste vehicle allocation. Result: As a result of the analysis, carbon dioxide(CO2) emissions were found to be reduced by about 56.9ton/day from the national network level, and the Seoul metropolitan area was analyzed to be reduced by about 54.7ton/day. Conclusion: This study quantitatively presented environmental impacts among various social effects that autonomous driving technology will bring, and in the future, development of various analytical methodologies and related studies should be continuously conducted.