본 연구는 국내 대학도서관진흥종합계획 수립을 위한 기초자료로 활용될 수 있는 주요 정책과제 개발을 목적으로 하였다. 이를 위해 국내외 대학도서관 발전계획 관련 선행연구 분석을 통해 대학도서관의 비전 및 역할, 정보자원, 연구지원, 교수학습 및 서비스 등의 기본 요인을 도출하였다. 이러한 요인을 기반으로 14개 대학 도서관 사서를 대상으로 인터뷰를 실시한 결과 1계층 4개 분야, 2계층 12개 추진과제, 3계층 24개 세부과제가 도출되었다. 인터뷰에서 도출된 정책과제에 대한 중요도 및 우선순위를 파악하기 위하여 학계 및 현장 전문가 6명을 대상으로 계층적 분석 방법(AHP)을 실시하였다. 그 결과 중요도가 높은 분야 및 추진과제를 중심으로 '학술정보자원 확충 및 공동 활용', '학습·연구지원 큐레이션 서비스 확대', '이용자 중심의 스마트 도서관 서비스 강화', '법·제도적 기반 고도화' 등 4대 분야 및 대학도서관 진흥 및 가치 제고를 위한 분야별 11개 추진과제, 23개 세부과제가 도출되었다.
현재 다양한 패러다임의 수많은 프로그래밍 언어가 존재하고 있으며, 각각의 프로그래밍 언어를 실습하려면 해석기(interpreter)나 컴파일러(compiler) 같은 언어처리기를 갖추는 것이 필요하다. 언어처리기를 개별적으로 갖추는 것은 설치에 대한 시간적 부담, 시스템 자원 낭비 업그레이드의 필요성 등으로 인해서 언어 학습과 직접적인 관련이 없는 부분에 대한 부담이 커진다. 본 논문에서는 WWW 환경에서 프로그래밍 언어를 실습할 수 있는 시스템을 구축하였다. 실습하는 프로그래밍 언어는 특정 서버에 제한적이지 않고, 네트워크를 통한 분산환경에서 확장이 용이하다. 또한 실습환경을 설정하는 구성 파일은 구조화된 문서의 작성을 지원하는 XML을 이용하여 관리자가 쉽게 구성파일을 작성할 수 있도록 했고, 자바의 정책(policy)파일을 이용해 시스템 자원 사용 허가를 투명하게 했다.
최근 미디어, 금융 등 다양한 분야의 기업들이 AI를 활용해 제공하는 서비스가 늘어남에 따라 학습된 모델을 엣지 자원에 배포하여 기능을 제공하는 서비스형태 또한 늘어나고 있다. AI-Application이 동작하기 위해서는 AI-Model 파일뿐 아니라 동작을 위한 설정 파일들이 필요하여 AI-Application이 사용 중인 AI-Model의 정보를 수집, 관리하는 것은 중요한 이슈라고 할 수 있다. 하지만 단일 서비스서버에서 동작하는 형태가 아닌 각 자원이 산재되어 다양한 형태로 서비스를 제공하는 엣지컴퓨팅의 구조적인 특성상 AI-Application의 기존 서비스구조, 기능을 수정하지 않고 정보를 수집하는 과정은 다양한 문제에 부딪치게 된다. 이에 따라 본 논문에서는 기존 서비스구조를 변경하지 않고 독립적으로 AI-Application에서 사용중인 AI-Model의 정보를 파악하고, 사용자 요청에 대응할 수 있는 관리구조를 제안한다.
본 논문에서는 IoT 환경의 무선 센서 네트워크 시스템 상의 효율적인 패킷 전달을 위해 큐러닝(Q-learning)에 기반한 다중 대기열 동적 스케쥴링 기법을 제안한다. 이 정책은 다중 대기열(Multiple queue)의 각 큐가 요구하는 딜레이 조건에 맞춰 최대한 패킷 처리를 미룸으로써 효율적으로 CPU자원을 분배한다. 또한 각 노드들의 상태를 큐러닝(Q-learning)을 통해 지속적으로 상태를 파악하여 기아상태(Starvation)를 방지한다. 제안하는 기법은 무선 센서 네트워크 상의 가변적이고 예측 불가능한 환경에 대한 사전지식이 없이도 요구하는 서비스의 질(Quality of service)를 만족할 수 있도록 한다. 본 논문에서는 모의실험을 통해 기존의 학습 기반 패킷 스케쥴링 알고리즘과 비교하여 제안하는 스케쥴링 기법이 복잡한 요구조건에 따라 유연하고 공정한 서비스를 제공함에 있어 우수함을 증명하였다.
스포츠 영상은 중요한 정보 자원에 속하여 있고 정확다가 높게 스포츠 영상 속에 유효 클립을 추출할 수 있어서 코치를 잘 보조하여 영상에서 선수들의 동작을 분석하며 사용자가 더 직관적으로 선수들의 타격 자세를 감상할 수 있다. 현재 스포츠 영상 클립 추출된 결과가 주관이 뚜렷하고 업무량이 많고 저효율 등 결함에 대해 MobileNetV3을 기반으로 스포츠 비디오 클립 분류 방법을 제시하였고 사용자의 시간이 절약하게 한다. 실험이 추출된 유효 클립에 대한 유효성 평가를 진행했으며 추출된 클립에서 유효적인 비율은 97.0%로 자지해서 유효 클립이 추출된 결과는 양호를 밝히는 동시 후속 배드민턴 동작의 원본 영상 데이터 집합의 구성을 위한 기초를 다진다.
편미분방정식의 해를 구하기 위한 여러 수치해법들의 한계와 순수 데이터 기반 기계학습의 단점을 극복하기 위해 물리정보신경망(physics-informed neural network, PINN)이 제안되었다. 물리정보신경망은 편미분방정식을 손실함수 구성에 직접 활용하여 기계학습 훈련에 물리적 제약을 주는 기법으로 파동방정식 모델링에도 활용될 수 있다. 그러나 물리정보신경망을 이용하여 파동방정식을 풀기 위해서는 신경망 훈련 시 입력에 대한 2차 미분이 수행되어야 하고, 그 결과로 출력되는 파동장은 복잡한 역학적 현상들을 포함하고 있어 섬세한 전략이 필요하다. 이 해설 논문에서는 물리정보신경망의 기본 개념을 설명하고 파동방정식 모델링에 활용하기 위한 고려사항들에 대해 고찰하였다. 이러한 고려사항에는 공간좌표 정규화, 활성함수 선정, 물리손실 추가 전략이 포함된다. 훈련자료의 공간좌표를 정규화한 후 사용하면 파동방정식 모델링을 위한 신경망 훈련에서 초기 조건이 더 정확하게 반영되는 것을 수치 실험을 통해 보였다. 또한 신경망을 통한 파동장 예측에 가장 적절한 활성함수를 선정하기 위해 여러 함수들의 특성을 비교했다. 특성 비교는 각 활성함수들의 입력자료에 대한 미분과 수렴성을 중심으로 이루어졌다. 마지막으로 신경망 훈련 중 손실함수에 물리손실을 추가하는 두가지 시나리오의 결과를 비교하였다. 수치 실험을 통해 훈련 초기부터 물리손실을 활용하는 전략보다 초기 훈련단계 이후부터 물리손실을 적용하는 커리큘럼 기반 학습전략이 효과적이라는 결과를 도출했다. 추가로 이 결과를 물리손실을 전혀 사용하지 않은 훈련 결과와 비교하여 PINN기법의 효과를 확인하였다.
이 연구는 기계학습의 도입이 미디어 산업구조에 어떠한 영향을 미칠 것인가에 대해 산업조직론적 관점에서 살펴보았다. 먼저 기계학습 기법이 미디어 산업에 성공적으로 도입되기 위해서는 각 산업 단계의 조직구성원 사이에서 기계학습 기반 시스템의 필요성에 대한 공감대 형성이 선행되어야 할 것으로 분석된다. 기계학습의 도입은 기존 방송 및 영화산업의 투자 의사결정과정과 제작 과정에 유의미한 변화를 가져올 것이며, 투자 측면에서는 객관적 데이터의 제공으로 인해 효율성이 증대될 것으로 보인다. 또한, 성과가 담보된 장르 및 형식의 콘텐츠에 투자가 집중됨에 따라 다양성이 감소할 가능성이 있다. 제작 측면에서는 창작자의 반복적 행위를 기계학습 시스템이 담당하는 역할을 한다면 생산효율성이 증대될 수 있다.
본 연구의 목적은 도서관 활용수업에서 사서교사와 교과교사의 협동수업을 향상하기 위한 교수설계전략을 개발하는 것이다. 협동수업은 학교 공동체에서 사서교사의 교수자로서의 역할을 강화할 수 있는 중요한 경영 활동이다. 그러나 협동수업의 실천 전략인 도서관 활용수업은 협력수준에서 이루어지고 있으며 자료 선정을 제외하고는 교과교사가 교수-학습활동을 주도하고 있는 실정이다. 도서관 활용수업은 자원기반학습이기 때문에 정보활용교육의 방법적 지식과 교과의 학습주제가 통합되도록 설계되어야 한다. 그리고 수업 준비 과정에서 나타날 수 있는 시행착오를 줄이고 성공을 확산시킬 수 있어야 한다. 이러한 측면에서 도서관 활용수업용 협동수업 설계 전략을 '협동수업 상황기술-공동설계-공동수업-공동평가'와 같이 설정하였다
결함 지역화는 관찰된 결함의 근본 원인을 자동 인식 하는 것이 가능하기 때문에 규모가 큰 분산시스템에서 중요 역할 수행하며 시스템의 신뢰성 개선을 위해 시스템의 관리와 제어가 가능한 자가 관리를 지원한다. 결함 지역화를 지원하는 기존 연구들은 유비쿼터스 환경에서 베이지안 네트워크와 같은 인공지능 기술들을 주로 사용하여 진단과 예측 기능 중 하나만을 고려하고 있다. 따라서, 본 논문에서는 시스템의 신뢰성 개선을 위해 실시간 시스템 성능 스트림에 대한 학습을 통해 자가관리를 위한 확률적 의존 분석을 기반으로 하는 결함 지역화 방법을 제안하여 진단과 예측기능을 동시 제공한다. 학습 방법으로 베이지안 네트워크 알고리즘을 사용하여 각종 관련된 요소들을 연결함으로써 네트워크를 생성하고 확률적 의존 관계를 통해 귀납적과 연역적 추론기능을 제공한다. 베이지안 네트워크의 구성은 노드들간의 연관성을 찾아내는 것이 중요하기 때문에 그것을 구성하는 인자의 개수가 많은 경우 노드 순서 리스트를 추출하는 사전처리 과정이 필요하다. 따라서 전체 모델링 프로세스에 대한 개선이 요구된다. 이러한 문제를 해결하기 위해 발생한 문제와 관련성이 높은 노드 순서 리스트를 추출하는 방법을 제공한다. 구조 학습을 지원 하는 사전처리 방법을 통해 다양한 문제 영역에서의 학습 효율성을 높이며 학습에 필요로 되는 시간을 줄인다. 제안 방법론을 통해서 시스템의 자원 문제를 신속하고 정확하게 진단하는 것이 가능하며, 관찰된 정보를 기반으로 실행 중에 발생되는 잠재적인 문제를 예측하는 것이 가능하다. 시스템 성능 평가 영역에서 제안 방법론을 적용한 시스템 성능 분석을 기반으로 진단, 예측의 효율성과 정확성을 평가하여 제안 방법론의 유효성을 입증하였다.
선진 각국에서는 지식기반 정보사회로의 급속한 이행과 사이버 공간의 확장에 따라 사이버 교육에 대한 법적 제도적 근거를 마련함은 물론 이의 적극적인 활용을 모색하고 있다. 우리나라에서는 교육혁신과 인적자원개발을 위한 2단계 교육정보화종합발전 방안을 마련 및 교육과정의 개편, 실행에 옳기고 있다. 새로운 이론인 구성주의에 근거 마련된 제7차 교육과정에서는 교수 학습시 ICT의 활용을 적극 권장하는 바, 훈련 받은 교사에 의한 아동의 교수 학습 효과가 현저하여 교사의 ICT활용 관련 기회의 요청이 요구되고 있다 본 연구에서는 전국규모의 교육용소프트웨어 공모전에 참여하는 경북지역 교사들의 ICT 활용 능력과 학교급별, 지역별, 저작도구별, 분과, 분야별, 저작인수별 실태를 파악하기 위하여 당해연도 경북도 대회 2등급 이상 상위 입상작 48편에 대한 분석 및 고찰을 실시한 결과, 교원의 ICT활용 능력 신장, 지역간 정보격차 해소, 교수 학습 방법 개선 지원을 강화할 필요가 있는 등 다수의 유의미한 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.