• Title/Summary/Keyword: 자외선 차단제

Search Result 129, Processing Time 0.042 seconds

Studies on Transparent Sunscreen of Water-in-Oil Emulsion Type (유중수 타입의 외관이 투명한 자외선 차단 화장료에 관한 연구)

  • Kwak, Jae-Hoon;Cho, Yong-Hun;Byun, Sang-Yo;Kim, Tae Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.469-479
    • /
    • 2015
  • This study is related to the developing method of a transparent sunscreen cosmetic which has waterproofing property and no white turbidity when applied to skin. The transparent sunscreen is prepared by exploiting refractive index difference between oil-phase and water-phase of water-in-oil(W/O) emulsion. The sunscreen according to this study is prepared as a W/O type emulsion so that it is water-stable and water resistance. Also, the stability of W/O type emulsion is developed by adjusting the content of oil phase part and water phase part. As a result of this studying, the transparent W/O emulsion is prepared by adjusting the refractive index of oil-phase and water-phase within 0.004 and it is found that the stability of the transparent sunscreen is increasing when the water phase part is over 75% (w/w) of the W/O emulsion. Through clinical test of transparent sunscreen, the value of sun protection Factor(SPF) and Protection Factor of UVA(PFA) were determined. SPF and PFA values of transparent sunscreen were indicated $30.99{\pm}1.65$ and $3.01{\pm}0.30$.

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.

A Study on the Interaction with Preservatives and UV-Filters, Packaging Materials for Sunscreen Preservation (자외선차단제품의 방부력 확보를 위한 방부제와 자외선 차단제, 제품 포장재의 상관성 연구)

  • Park, Tae-Hun;Kwack, Il-Young;Jeon, Gi-Boong;Kim, Hyun-Hee;Kim, Han-Kon;Shin, Kye-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2010
  • We measured and compared the partition coefficients and absorption levels of preservative phenoxyethanol (PE), antimicrobial ethylhexylglycerin (EG) and UV-filters widely used in cosmetic products and more specifically evaluated the relative absorption level of PE depending on various packaging materials. The resulting partition coefficients of 11 UV filters in relation to PE and EG displayed EG with a relatively higher partition coefficients. The partition coefficients of Tinsorb M and Solaveil CT434 were also high. Among the UV-filter ingredients with EG absorption levels exceeding 40 % were Gransil PSQ, UV Titan M 160 and Micro $TiO_2$ MT 100 TV, whereas Gransil PSQ and Scadder showed PE absorption levels above 40 %. In addition, we confirmed that PE had displayed an absorption level of 7 ~ 8 % as a result of 1 month-long exposure to packaging material polyoxymethylene. This extensive research illustrates the possibility of producing the most potent preservative contents based on studying the relative compatibility between UV-filters and preservatives and selecting the adequate preservatives to be used. Furthermore, preservative level can also decline with passage of time depending on the type of packaging material used.

UV Degradation Characteristics and Applicability of Coating Agent for Conservation of FRP Artifacts (FRP 작품 보존을 위한 자외선 열화 특성 및 자외선 차단 코팅제 적용 연구)

  • Han, Ye Bin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.33 no.3
    • /
    • pp.203-214
    • /
    • 2017
  • This study evaluated the degradation characteristics of FRP by ultraviolet (UV) rays and applied a UV-resistant coating to prevent the degradation of the surface of these sculptures. As a result of the degradation caused by UV rays, there were slight changes in the FRP surface and contact angle. The chromaticity sharply increased in the early phase of degradation. After applying the coating to the FRP, no significant surface changes were observed. However, it had lower changes in color as compared to the uncoated specimen, so it was verified that the control of discoloration could be possible. Some changes in the gloss and contact angle were observed depending on the extent of degradation, but the UV coating agent remained relatively stable. Analysis of the infrared light spectrum showed that there were almost no chemical changes, and it could be concluded that the coating treatment prevented degradation for a certain period. This study investigated the degradation of FRP used as materials in artwork exposed to UV rays, and it was found that there was a delay in the onset of degradation in the FRP with the UV-resistant coating when compared to the uncoated FRP.

Emulsion Stability of Low Viscosity W/O Emulsion and Application of Inorganic Sunscreen Agents (저점도 W/O 에멀젼의 유화 안정성 증진 및 무기 자외선 차단제의 적용)

  • Yeon, Jae Young;Seo, Jeong Min;Kim, Tae Hoon;Shim, Jae Gon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.985-1001
    • /
    • 2018
  • In this study, we tried the various experiments using the emulsifier, electrolyte, stabilizer and gelling agent in order to improve a stability of low viscosity W/O emulsion. As a result, when we used polyglyceryl-4 diisostearate/polyhydroxystearate/sebacate as a main emulsifier, PEG-30 dipolyhydroxystearate and cetyl PEG/PPG-10/1 dimethicone as a co-emulsifier for stable emulsification system, 0.5 % sodium chloride as an electrolyte, 1 % distearyldimonium chloride as a stabilizer, 0.5 % glyceryl behenate/eicosadioate as an oil gelling agent, emulsion particle is the best. Also, we got the stable and low viscosity W/O emulsion maintained at a constant viscosity at 2,000 cps or less. In addition, we were able to examine the possibility of development of low viscosity fluids type sunscreens with excellent feeling and stability through the application of inorganic sunscreen agents.

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

Simultaneous determination of sunscreen agents in cosmetics by HPLC (HPLC를 이용한 화장품 중의 자외선 차단제 동시분석방법 연구)

  • Lee, Yong-Hwa;Yang, Jae-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.577-584
    • /
    • 2012
  • The simultaneous analysis of sun screen agents in commercial cosmetic samples was carried out by High Perfomance Liquid Chromatography(HPLC). The cosmetic samples are directly dissolved in Tetrahydrofurane(THF) and filtered using $0.45{\mu}m$ filter. The water/methanol/THF was used for the mobile phase of gradient conditions. An Extend C18 reversed-phase column and the selected UV/Visible detector was applied. The analysis results of HPLC showed good linearity with correlation coefficient of $r^2$=0.9992 in the rage of $50{\sim}800{\mu}g/mL$ and detection limit of $0.01{\mu}g/mL$.

UV Absorbent-added Polymerization and its Application as Ophthalmological Material (자외선 흡수제를 첨가한 고분자 중합 및 안 의료용 소재로의 적용)

  • Sung, A-Young;Kim, Tae-Hun;Ye, Ki-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • This study was done for the preparation of macromolecular material with UV-blocking features by adding the benzophenone group that is commonly used as a UV-absorbent and $TiO_2$ which is known to be a very stable material in chemical and physical aspects. Also, we compared the level of UV absorbency of the polymer produced from polymerization with previous materials and measured basic properties such as water content, refractive index and optical transmittance of produced contact lenses. The results of the measurement showed that the refractive index and water content of the contact lens with added UV-absorbent was 1.430~1.440 and 35.0~45.0% respectively, which was similar to that of previous contact lenses. Also, for optical transmittances of each wave length, contact lenses without the UV-absorbent was 89%, 88% and 89% respectively for UV-A, UV-B and visible light, indicating that the UV transmittance is very high though contrary with cases of contact lenses with added 2-hydroxy-4-methoxy-benzophenone and 2,4-dihydroxy-benzophenone which showed transmittances of 0% and 6% respectively for UV-A and UV-B showing a UV-blocking effect. Meanwhile, contact lenses with added $TiO_2$ showed transmittance of 6% and 51% respectively for UV-A and UV-B also showing a UV-blocking effect. The visible transmittance was 77~89% showing that it satisfies the visible transmittance required for ophthalmological materials.

Stability and Sun Protection Efficacy of Sunscreens Based on the Solubility and a Combination of Organic UV Absorbers (유기 자외선 흡수제의 조합과 용해도에 따른 자외선 차단 효율의 비교 및 안정성에 관한 연구)

  • Yeon, Jae Young;Hong, Seung Deok;Choi, Se Bum;Kim, Ta Gon;Lee, Cheong Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.189-199
    • /
    • 2015
  • In this study, we have investigated the stability of sunscreens based on the solubility of organic UV absorbers in the oil and sun protection efficacy of the products composed of a combination of organic UV absorbers to develop more stable and efficient sunscreen products. Results showed that the solubility of the organic UV absorber and stability were varied depending on the type, storage conditions and concentration of oil. It was also observed from the products in the emulsion type. Various UV absorbances were determined to the products composed of the combination of organic UV absorbers. In some combinations, a synergistic effect was observed to make an increase in absorbance compared to a single component. In other cases, specific synergistic effect was displayed only when combined with the particular component. In addition, the storage condition also affected the sunscreen efficacy. In conclusion, this study confirmed that there are various factors which could affect the UV-blocking efficiency of sunscreen products.