Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.221-224
/
2011
관계에 대한 다양한 자연어 표현을 다루는 것은 구조 정보에 대한 자연어 질의 인터페이스 연구의 중요한 문제 중에 하나이다. 이러한 문제를 해결하기 위한 기존의 연구들은 자연어 질의 인터페이스를 대상 분야에 적합하게 구축하기 위한 수작업에 의존하였다. 이러한 접근은 소규모 구조 정보에 대한 자연어 질의 인터페이스 구축 시 효율적으로 적용될 수 있다. 하지만 최근에는 RDF와 OWL과 같은 그래프 구조 정보가 다양한 분야에서 대량으로 생성되고 있다. 수작업에 의존하는 접근을 통해 이러한 대량의 그래프 구조 정보에 대한 자연어 인터페이스를 구축하기에는 어려움이 있다. 본 논문은 자연어 인터페이스에 대한 자연어 표현의 다양성 문제를 해결하기 위해 자동으로 관계에 대한 자연어 표현을 수집하는 방법을 제안한다. 그래프 구조 정보에서 관계는 두 객체를 연결하는 유일한 에지(edge)로 표현된다. 제안한 방법은 주어진 에지로 연결되는 서로 다른 객체 쌍을 말뭉치(corpus)에서 검색하고 검색된 객체 쌍 주변에서 빈번하게 등장하는 자연어 표현을 수집한다. 자동으로 수집한 자연어 질의 표현을 자연어 인터페이스에 적용한 결과 수작업에 의존하는 기존 연구들과 비교할 만한 실험 결과를 보였다.
The majority of work done to date on natural language processing has focused on analysis and understanding of language, thus natural language generation had been relatively less attention than understanding, And people even tends to regard natural language generation CIS a simple reverse process of language understanding, However, need for natural language generation is growing rapidly as application systems, especially multi-language machine translation systems on the web, natural language interface systems, natural language query systems need more complex messages to generate, In this paper, we propose an algorithm to generate more flexible and natural sentence using lexical functions of Igor Mel'uk (Mel'uk & Zholkovsky, 1988) and systemic grammar.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.281-284
/
2019
본 논문에서는 최근 인공지능 기반의 자연어이해기술을 활용한 자연어 인터페이스 표준화 현황을 소개하고 사물기반의 미디어 사물간의 기능들을 표준화하고 있는 MPEG IoMT 표준에서의 자연어 인터페이스 구현 내용을 소개한다. 자연어 인터페이스에는 음성인식 기술, 음성합성 기술, 언어처리 기술, 질의응답기술, 음성 자동통역 기술등이 포함되며 언어지능으로서의 자연어 인터페이스를 사물 인터넷 환경에서 구현하기 위해 MPEG IoMT 의 표준화된 포맷과 활용 방식을 소개한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.405-409
/
2021
자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.
The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.533-536
/
2019
의존 구문 분석은 문장 구성 성분 간의 의존 관계를 분석하는 태스크로, 자연어 이해의 대표적인 과제 중 하나이다. 본 논문에서는 한국어 의존 구문 분석의 성능 향상을 위해 Deep Bi-Affine Network와 Left to Right Dependency Parser를 적용하고, 새롭게 한국어의 언어적 특징을 반영한 Right to Left Dependency Parser 모델을 제안한다. 3개의 의존 구문 분석 모델에 단어 표현을 생성하는 방법으로 ELMo, BERT 임베딩 방법을 적용하고 여러 종류의 모델을 앙상블하여 세종 의존 구문 분석 데이터에 대해 UAS 94.50, LAS 92.46 성능을 얻을 수 있었다.
최근 웹을 기반으로 한 계속적인 기술 발전에 따라 의사결정에 필요한 데이터의 요구는 점점 다양해지고 있으며 다양한 요구를 효과적으로 대응하기 위해 데이터 추출 방법에 대한 연구도 지속적으로 이루어지고 있다. 이에 본 논문에서는 자연어를 통해 사용자가 쉽게 원하는 자료를 추출 할 수 있는 방법론을 연구 하였다. 자연어 처리 기술에 대한 연구는 여러 방면에서 이루어지고 있는데 그 중에서도 본 논문에서는 기존의 자연어 처리 연구를 바탕으로 크게 3가지 형태로 연구 진행 하였다. 사용자가 입력한 정보를 바탕으로 유추하여 자연어를 처리하거나 이후 진행될 검색을 선 예측 하는 방법과 사용자 별로 검색되는 자연어를 통해 연관 관계를 설정하여 사용자에게 예측검색을 유도하는 방법 그리고 의사 결정을 위해 구축된 데이터베이스 스키마 정보를 이용하여 사용자가 쉽게 질의 문을 생성할 수 있도록 하는 방법론 연구이다. 본 논문을 통해 연구된 내용은 실제 구축하여 진행 하였고, 연구결과로 생성된 질의 문이 효과적으로 시스템에서 처리 되는 과정에 대한 연구도 함께 진행하고 검증하였다.
Hyerin Kang;Yeonji Jang;Yejee Kang;Seoyoon Park;Hansaem Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.26-31
/
2022
자연어처리에서 데이터는 굉장히 많은 부분을 차지하고 중요한 역할이지만, 데이터로 인한 윤리적 이슈 또한 많이 나타난다. 본 연구는 자연어처리에서의 데이터 흐름의 과정에서 나타날 수 있는 윤리적 이슈를 단계별로 정리하였다. 이는 복잡한 자연어처리 과정의 특성과 자연어처리 분야에서 나타나는 상황을 모두 고려한 것이다. 또한 단계별로 정리한 이슈를 토대로 자연어처리가 더 나은 방향으로 나아가기 위한 데이터 관점에서의 미래 방향을 제시하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.383-387
/
2019
자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.419-422
/
2023
자연어 추론은 전제 문장과 가설 문장의 관계를 함의, 중립, 모순으로 분류하는 자연어 처리 태스크이다. 최근 여러 자연어 처리 태스크에서 딥러닝 모델을 이용하는 방법이 우수한 성능을 보이고 있지만, 이는 미세 조정과정에 드는 비용이 많다는 점과 모델 출력의 근거, 과정을 사람이 이해하기 어려운 한계가 있다. 이러한 이유로 최근에는 소량의 입력, 출력 예시를 포함한 프롬프트를 이용한 방법론과 모델 출력에 대한 근거를 생성, 활용하는 방법에 관한 많은 연구가 진행되고 있다. 본 논문에서는 퓨샷 학습 환경의 한국어 자연어 추론 태스크를 위한 세 가지 프롬프트 방법과 이들을 조합하여 적용하는 방법을 제안한다. 이를 통해 '해석 가능성'과 자연어 추론 성능을 모두 향상시킬 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.