• Title/Summary/Keyword: 자연기화가스

Search Result 7, Processing Time 0.018 seconds

Development of a High Efficient LNG Refrigerated Truck using Natural Refrigerant CO2 (자연냉매 CO2를 이용한 고효율 LNG 냉동 트럭의 개발)

  • Jeong, Se Jin;Kwak, Hun Sub;Min, Ho Ki
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.77-82
    • /
    • 2020
  • In this paper, we developed a cooling system for the refrigeration truck using natural carbon dioxide refrigerant which is attracting attention as an environmentally-friendly refrigerant. We developed a high efficient environmentally-friendly refrigerated truck that converted the existing diesel vehicle into an LNG vehicle to improve emissions of truck and improved the efficiency of the cooling system by utilizing a heat of LNG vaporization. The COP of refrigerated truck system was increased 144%.

Performance Test and System Analysis on Check-Floater in a Coil-Typed LP Gas Vaporizer (전열온수식 LPG 기화기 액 유출 방지장치 성능평가 및 시스템 분석)

  • Choi, Sung-Joon;Kwon, Jeong-Rock;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.46-50
    • /
    • 2007
  • The metering systems in LPG vaporizers have been frequently exposed to severe conditions and resulted in many problems such as gauge malfunctioning and rupturing if the check-floaters fail to stop liquid outflow when the heat supply for the vaporization of LPG is interrupted. Therefore, to analysis the vaporizer system we carried out the vaporizer performance test and float bulb test by newly devised test equipments. Consequently, we determined the specific gravity of the float bulb and reasonable operating temperature ranges for the LPG and heating waters.

  • PDF

A Study on the Natural Evaporation Capacity of LPG Container (액화석유가스 용기의 자연 증발량에 관한 연구)

  • Jo Young-Do;Kim Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.22-29
    • /
    • 2001
  • The number of gas containers and the period of exchanging gas containers are vsy important in designing liquefied petroleum gas(LPG) supply system for small capacity domain. And also the evaluation of remaining LPG in containers to be exchanged is very useful information in commerce. However seldon has been studied on calculating method about those with respect to gas consumption pattern. In this study, a simulation method was developed to estimate the evaporation capacity of LPG container, the mass gas flow rate from LPG container, the temperature and vapor pressure of LPG, and the remained LPG at containers to be exchange by using LPG property equations, mass balance equation, and heat balance equation. The simulation results were correlated well with experimental data. The overall heat transfer coefficient from air to LPG is approximately $9{\~}13 kcal/m^2{\cdot}hr{\cdot}^{\circ}C$ and does not strongly affect on the evaporation capacity of LPG container. The mass gas flow rate from LPG container is constant when the vapor pressure of LPG is within pressure regulator's control range. While, out of range, it suddenly reduce to a evaporation rate which is balanced with heat transfer from air. The evaporation capacity of LPG container increased with surrounding temperature and the composition of propane, and decreased drastically with continuous gas consumption. The number of gas containers divided the number of houses using gas supply system was reduced by using automatic gas feeding device.

  • PDF

Experimental Analysis of Boil-Off Gas Occurrence in Independent Liquefied Gas Storage Tank (독립형 액화가스 저장탱크의 BOG 발생에 대한 실험적 분석)

  • Cha, Seung-Joo;Bae, Jin-Ho;Lee, Dong-Ha;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.380-385
    • /
    • 2018
  • With the tightening of environmental regulations (i.e., IMO Tier III), natural gas (NG) has been spotlighted as an eco-friendly fuel with few air pollutants other than nitrogen oxides (NOx) and sulfur oxides (SOx). For reasons of economic efficiency, it is mainly stored and transported in a liquid state at $-163^{\circ}C$, which is a cryogenic temperature, using a liquefied gas storage tank. Accordingly, it is necessary to reduce the boil-off gas (BOG) occurrence due to the heat flow according to the temperature difference between the inside and outside of the storage tank. Therefore, in this study, a BOG measurement test on an independent-type storage tank made up of SUS304L was carried out. The test results showed the tendency for BOG occurrence according to the temperature under different filling ratios.

Properties of Dielectric Constant and Bonding mode of Annealed SiOCH Thin Film (열처리한 SiOCH 박막의 결합모드와 유전상수 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Park, Yong-Heon;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.43-44
    • /
    • 2008
  • PECVD 방식에 의거 low-k 유전상수를 갖는 층간 절연막 (ILD)를 제작하였다. 전구체 BTMSM 액체를 기화하여 16sccm 에서부터 1 sccm씩 증가하면서 25sccm 까지 p-Si[100] 기판위에 유량비를 조절하였으며 60 sccm으로 일정산소 $O_2$ 가스를 반응 챔버에 도달하도록 하였다. 제작된 시편의 구성성분은 FTIR의 흡수선으로 확인하였고, 알루미늄 전극을 구현한 MIS (Al/SiOCH/p-si(100)) 구조의 커패시터를 가지고 정전용량-전압 (C-V) 특성을 측정하여 유전상수를 계산하였다. BTMSM/$O_2$에 의한 층간절연막의 k ~ 2 근방의 저유전상수는 유량비에 민감하게 의존되고 열처리에 의하여 $CH_3$의 소멸 및 Si-O-Si(C) 성장하는 효과에 의하여 더 낮아짐을 확인할 수 있었다. 또한 상온 및 대기압에서 공기 중에 노출시켜 자연 산화과정을 겪은 시편들의 유전상수는 전체적으로 증가하였지만, 열처리한 박막이 상대적으로 안정화된 것을 확인하였다.

  • PDF

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF