• Title/Summary/Keyword: 자성 센서

Search Result 100, Processing Time 0.028 seconds

The Characteristic Analysis of Thin Film Sensor using The Membrane (Membrane을 이용한 박막센서 특성 분석)

  • 이순우;김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.37-41
    • /
    • 2002
  • In this research, we investigate the properties of membrane and thin film sensor which is using magnetic resonance properties. we expect to $Si_xN_y$ and SiC materials as membrane materials, we measured thin film stress and properties to find the best membrane fabrication condition. Of the two membrane, $Si_xN_y$ thin film is the better than SiC thin film. because of an adequate tensile stress and lower thermal expansion coefficient as sensor structure layer. After performing deposition and patterning thin film sensor material on $Si_xN_y$, we analyzed the magnetic hysteresis and magnetic resonance frequency of sensor. If the magnetic field which is applied in sensor material is removed, magnetization made by magnetic field is transited to elastic mode. moreover. energy radiation is induced during the transition and voltage generates in sensor by energy radiation. At this moment, If voltage generation period is longer, mechanical vibration is induced and signal is generated by mechanical vibration. we also see that as the increase of thin film sensor' length and width, magnetic resonance frequency is decreased.

  • PDF

Magnetic Nano-biosensor Technology (자성 나노바이오센서 기술)

  • Lee, Jung-Rok
    • Vacuum Magazine
    • /
    • v.5 no.1
    • /
    • pp.4-8
    • /
    • 2018
  • Many devices based on magnetism such as power generators and motors are frequently used in real life. Magnetic materials at nano-scale can be utilized as storage devices such as magnetic tapes and hard disk drives as well as spintronics. In addition to spintronics, magnetic biosensors are another interesting application of magnetic devices at nano-scale. Here, we briefly review magnetic nano-biosensors including Hall-effect sensors, giant magnetoresistive sensors, and tunnel magnetoresistive sensors for many biomedical applications.

Study on Basic Magnetic Characteristics in New Magnetic Materials (새 자성 재료의 기초자기특성 연구 (1) 자성체 기초특성의 새측정법 연구)

  • 이용호;김인수;신용돌;이연숙;이영희
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.85-88
    • /
    • 1991
  • A high sensitive magnetometer using piezoelectric torque sensor was built. The torque produced on the magnetizde sample with small oscillating magnetic field was measured by a piezoelectric sensor. The torque is proportional to the magnetization of the sample. Errors of the measurement for saturation magnetization remain less than 5 % compared to existing standard values.

  • PDF

Deposition and Characterization of SiN and SiC for Membrane Applications

  • 강정호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • LPCVD를 이용하여 증착한 SiN과 ECR plasma CVD를 이용하여 증착한 SiC의 물 성과 적용가능성을 시험하였다. LPCVD로 증착된 SiN은 열처리 없이 저 응력의 박막형성이 가능했으며 가시광투과도 표면 평활도 역시 우수하였다. 탄성계수 값이 크지 않아 자성센서 의 지지구조로 사용할 경우 자기공명에 의한 진동을 크게 구속하지 않아 유리할것으로 기대 된다. 반면 ECR plasma CVD로 증착된 SiC는 SiN보다는 못하지만 다른 방법에 의해 증착 된 SiC에 비해서는 가시광 투과도 및 표면 평활도가 후수하므로 X-선 조사에 대한 안정성 과 더불어 X-선 마스크용 membrane으로서 사용이 적절할 것으로생각된다.

Magnetic Field Sensor by Using Magnetic Effect in YBaCuO Superconductor (BPSCCO 초전도 자성센서)

  • 이상헌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.137-139
    • /
    • 2003
  • The relationship between magnetic properties of BiPbSrCaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

Measurement Feasibility Assessment of Coating Film Thickness using Dual Sensor (이중센서를 이용한 코팅막 두께 측정 가능성 평가)

  • 김주현;김성렬;김정욱;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.78-81
    • /
    • 2004
  • A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.

  • PDF

Fabrication and Sensor Properties of Garnet Thin Films for Magneto-Optic Electrical Current and Magnetic Field Sensor (광자기 전류 자장 센서용 가넷 박막의 제조 및 센서 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.74-78
    • /
    • 1998
  • High quality single cystal Bi, Gd : YIG films have been grown on GCMZGG wafers by LPE techniques. The magnetic, magneto-optic and sensor properties of the films have been investigated. The films showed high linearity with almost no hystersis, saturaton Faraday rotation angle of 45$^{\circ}$, saturation field of about 1.1 kOe, Verdet constant of 5.6$^{\circ}$ /(Oe, cm) at room temperature, and temperture coefficient of Verset constant of 0.0056$^{\circ}$ /(Oe, cm, $^{\circ}C$) in the range of 0 $^{\circ}C$~100 $^{\circ}C$. The sensor made out of the film exhibited highly linear signal in the range of 3 A-300 A.

  • PDF

Fabrication process for micro magnetostrictive sensor using micromachining technique (Micromachining을 이용한 초소형 자왜 센서 제작공정 연구)

  • 김경석;고중규;임승택;박성영;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 1999
  • The fabrication process for miniaturizing the Electronic Article Surveillance (EAS) sensor was studied using micromachining technique. Two types of sensor structure, free standing membrane type and diving beard type, were proposed and researched for establishing the fabrication process. The membrane type structure was easy to change the sensor shape but had the limitation for miniaturizing, because the size of the sensor depends on the silicon substrate thickness. The diving board type structure has the advantage of miniaturization and of free motion. Since the elastic modulus is not trio high, SiN film is expected to be adequate for the supporting membrane of magnetic sensor. The selectivity of $H_2O_2$for sputtered W with respect to Fe-B-Si, which was studded for magnetic sensor materials, was high enough to be removed after using as a protection layer. Therefore, the diving board type process using the silicon nitride film for the supporter of the sensor material and the sputtered W for protection layer is expected to be useful fur miniaturizing the Electronic Article Surveillance (EAS) sensor.

  • PDF

A study on the optical switch using magnetic behavior of magnetic fluids (자성유체의 자기적 거동특성을 이용한 광 스위치에 관한 연구)

  • Choi, Bum-Kyoo;Oh, Jae-Geun;Kim, Do-Hyung;Song, Kwan-Min
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This paper presents the development of the optical switch using magnetic behavior of magnetic fluids, which is expected to be used broadly in high-speed information communication. The magnetic fluids for switching an incident light, have the magnetic characteristics of magnetic materials and fluidity of liquids, simultaneously. The relations are derived between the intensity of magnetic field and the angle of optical fiber which is bent by a behavior of magnetic fluid when the magnetic field is applied. When optical switch is implemented by the movement of liquid using magnetic fluid, the existing problem of durability for optical switch will be improved. Thus, this study shows the feasibility of the application for the optical switches using magnetic fluids.

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.