Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.97-105
/
2007
수문학적 토양유형은 복잡하게 세분되어 있는 토양의 종류를 수문학적인 목적에 따라 단순화하기 위해 만든 것으로 미농무성 토양보전국에서 고안한 개념이다. 우리나라 토양을 이 방법으로 구분하고자 하는 몇번의 시도가 있으며 그 중 대표적인 것이 정 등(1995)이 분류한 수문학적 토양군이다. 이는 토양의 침투 투수특성에 대한 실측자료가 부족한 우리나라의 실정을 감안하여 토성속(textural family), 배수등급(drainage class), 불투수층(impermeable layer), 투수성(permeability)의 네가지 토양특성을 분류특성으로 하여 각각에 1-4점 범위로 점수를 매긴 후 합산한 점수를 기준으로 수문학적 토양유형을 분류하는 것이다. 최근에는 토양의 한계침투속도에 따라 수문학적 토양유형을 분류하고자 하는 시도가 있으며 본 논문에서는 새로운 방법으로 분류할 때 기존의 방법과 어떠한 차이가 있는지 비교하고자 하였다. 정 등(1995)의 분류방법은 개념상 몇가지 문제점을 안고 있다. 먼저 토양의 수리특성은 같은 토성속이라 하여도 토양생성 과정과 토지이용 방법에 따라 그 차이가 매우 큼에도 불구하고 이에 대해 고려하지 못하였으며 다음으로 지표유거가 많아 배수가 양호한 토양의 강우 유출을 과소평가한다. 또한 얕은 토심에 존재하는 불투수층이 존재하는 경우 토양의 수리특성에 관계없이 적은 양의 강우에도 유출이 발생하므로 별도의 제한인자로 간주하여야 한다. 토양의 한계 침투속도를 이용한 분류방법은 이러한 문제점을 상당 부분 개선할 수 있다. 토양의 한계침투속도를 산정하기 위해 현장에서 지표 한계침투속도와 투수속도를 측정하였으며 이 자료를 확장하여 해석하기 위해 입자특성을 이용한 Pedo Transfer Function을 개발하였다. 토심 50 cm 포화시 토양 투수성을 한계 침투속도로 가정하였으며 50 cm 이내에 암반층과 지하수위가 존재할 경우 투수성에 관계없이 D유형으로 분류하였다. 새로운 방법으로 분류한 결과 기존의 분류와 몇가지 차이점이 발견되었다. 가장 큰 차이는 대부분의 논토양이 느린 한계침투속도의 영향으로 D유형에 속한 것이다. 산림토양과 밭토양은 기존 방법과 마찬가지로 A, B유형이 많았으며 암반층을 고려하기 전에는 기존 분류에 비해 강우 유출 가능성이 적은 쪽으로 평가되었다. 그러나 암반층이 존재하는 토양을 고려한 결과 A 또는 B 유형에 속하던 상당수의 산림토양이 새로운 분류에서 D유형으로 분류되었다. 지표 유거가 많아 배수등급이 매우양호로 분류되던 토양은 정 등(1995)의 분류와 비교하여 대부분 강우 유출 가능성이 큰 쪽으로 조정되었다. 새로운 수문학적 토양유형을 이용할 경우 낮은 토심에서 암반층이 발견되는 산림토양이 분포한 유역이나 산림, 밭 등에 식질 토양이 많이 분포하는 유역에서는 기존의 방법을 이용하는 것보다 강우 유출량이 높게 평가될 것으로 판단된다. 앞으로 강우 유출량 실측자료와의 비교를 통해 지속적인 보정을 하여야 할 것이며 특히 불투수층의 존재시 일괄적으로 D유형으로 분류된 토양의 경우 깊이에 따라 C 또는 D 유형으로 세분하여 조정할 필요가 있다.
The goal of this paper is to compare classification performances and to find a better classifier based on the characteristics of data. The compared methods are CART with two ensemble algorithms, bagging or boosting and SVM. In the empirical study of twenty-eight data sets, we found that SVM has smaller error rate than the other methods in most of data sets. When comparing bagging, boosting and SVM based on the characteristics of data, SVM algorithm is suitable to the data with small numbers of observation and no missing values. On the other hand, boosting algorithm is suitable to the data with number of observation and bagging algorithm is suitable to the data with missing values.
Projection pursuit classification tree uses a 1-dimensional projection with the view of the most separating classes in each node. These projection coefficients contain information distinguishing two groups of classes from each other and can be used to calculate the importance measure of classification in each variable. This paper reviews the variable importance measure with increasing interest in line with growing data size. We compared the performances of projection pursuit classification tree with those of classification and regression tree(CART) and random forest. Projection pursuit classification tree are found to produce better performance in most cases, particularly with highly correlated variables. The importance measure of projection pursuit classification tree performs slightly better than the importance measure of random forest.
본 연구에서는 FTA 및 퍼지 FTA 방법을 프로그래밍이 용이한 규칙-기반 지식 표현 방법으로 프로그래밍을 설계하기 위한 것으로, FAT 방법에 필요한 전문지식들을 처 리하기 위하여 객체지향 접근방법으로 FTA 를 설계하였다. FTA의 구성요소들에 대한 자료구조는 다음과 같이 세가지 형태로 분류할 수 있다. 1)구성요소들의 자료구조가 확정적인 값으로 나타나는 경우 2)구성요소들의 자료구조가 부정확한 값으로 나타나는 경우 3)구성요소들의 자료구조가 확정적인 값 및 부정확한값으로 동시에 주어진 경우로 나타날 수 있다. 본 연구에서는 객체지향적 펴지 FTA 전문가 시스템(FFTAES: Fuzzy FTA Expert System)을 활용하여 세 번째 형태인 구성요소들의 자료구조가 확정적인 값 및 부 정확한 값이 동시에 주어진 경우를 정량적으로 고장안전진단을 실시할 수 있도록 설계 하였다.
Park, Jong-Gil;Jeong, U-Sik;Choe, Hyo-Jin;Kim, Seok-Cheol;Park, Hwang-Su;Gu, Hyeon-O
Proceedings of the Korean Environmental Sciences Society Conference
/
2007.05a
/
pp.227-230
/
2007
1985년-2004년 동안의 재해연보 자료를 전산화하여 필요한 자료를 프로그램을 이용하여 추출하고 분석할 수 있도록 자연재해 Database를 Table 2와 같이 구축하였다. 이 DB는 매년 발생하는 피해에 대하여 updata 해야 하는 자료이므로 피해액을 당해연도 기준으로 사용하였으며, 기존의 재해연보를 입력하는 과정에서 총 피해액 합계의 오류와 지난 20년간의 행정구역의 변화를 재정리한데 의의가 있다. 또한 기상연보와 재해연보를 비교하는 과정에서 재해 발생빈도가 원인별로 일치하지 않은 점을 발견하여 기상연보에는 있으나 재해연보에는 없는 사건을 DB에 추가하였다. DB를 구축하는데 있어 가장 어려운 부분은 용어와 분류에 대한 기준을 정하는 과정과 사용하는 자료마다 수치가 달랐다는 점이다. 자연재해 피해 자료를 기재하는 일정한 기준을 마련하여 앞으로 만들어질 피해자료가 좀 더 체계적으로 분류되어야 한다. 또한 김해시에서 1,000억원이 넘는 피해를 입힌 호우와 태풍 사례에 대하여 우심지역으로 분석된 한림면과 상동면, 생림면은 김해시 내에서도 특히 사전재해저감계획을 수립하여 매년 같은 피해를 입지 않도록 노력해야 한다.
Journal of the Korean association of regional geographers
/
v.9
no.3
/
pp.385-394
/
2003
Authors tried to classify landforms of civilian-restricted trans-border coastal region of the East Sea by using both field survey and remote sensing data including IKONOS images and digital maps. As a result, authors can draw the boundaries of landform units on satellite images and classify landforms effectively. Typical landforms of undisturbed depositional coastal area such as coastal sand dune, sand bar, lagoons, and tombolo are found within the study area. Also, riverine wetlands and estuarine wetlands are readily discernable on both satellite image and field survey. Even though landforms within the study area are relatively small, they are so dynamically connected that their preservation value is very high.
Journal of Korean Society for Geospatial Information Science
/
v.19
no.4
/
pp.139-144
/
2011
This study proposed a classification method of LIDAR data by using simultaneously the color information (R, G, B) and reflection intensity information (I) obtained from terrestrial LIDAR and by analyzing the association between these data through the use of statistical classification methods. To this end, first, the factors that maximize variance were calculated using the variables, R, G, B, and I, whereby the factor matrix between the principal factor and each variable was calculated. However, although the factor matrix shows basic data by reducing them, it is difficult to know clearly which variables become highly associated by which factors; therefore, Varimax method from orthogonal rotation was used to obtain the factor matrix and then the factor scores were calculated. And, by using a non-hierarchical clustering method, K-mean method, a cluster analysis was performed on the factor scores obtained via K-mean method as factor analysis, and afterwards the classification accuracy of the terrestrial LiDAR data was evaluated.
Kim, Min-Chul;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In;Park, Jun-Ku
Journal of Korean Society for Geospatial Information Science
/
v.19
no.1
/
pp.79-86
/
2011
Recently, aerial laser scanning technology has received full attention in constructing DEM(Digital Elevation Model). It is well known that the quality of DEM is mostly influenced by the accuracy of DTD(Digital Terrain Data) extracted from LiDAR(Light Detection And Ranging) raw data. However, there are always misclassified data in the DTD generated by automatic filtering process due to the limitation of automatic filtering algorithm and intrinsic property of LiDAR raw data. In order to eliminate the misclassified data, a manual filtering process is performed right after automatic filtering process. In this study, an algorithm that detects automatically possible misclassified data included in the DTD from automatic filtering process is proposed, which will reduce the load of manual filtering process. The algorithm runs on 2D grid data structure and makes use of several parameters such as 'Slope Angle', 'Slope DeltaH' and 'NNMaxDH(Nearest Neighbor Max Delta Height)'. The experimental results show that the proposed algorithm quite well detected the misclassified data regardless of the terrain type and LiDAR point density.
Proceedings of the Korea Contents Association Conference
/
2008.05a
/
pp.897-901
/
2008
The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.3
no.3
/
pp.158-164
/
1998
We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.