수문학적 토양유형은 복잡하게 세분되어 있는 토양의 종류를 수문학적인 목적에 따라 단순화하기 위해 만든 것으로 미농무성 토양보전국에서 고안한 개념이다. 우리나라 토양을 이 방법으로 구분하고자 하는 몇번의 시도가 있으며 그 중 대표적인 것이 정 등(1995)이 분류한 수문학적 토양군이다. 이는 토양의 침투 투수특성에 대한 실측자료가 부족한 우리나라의 실정을 감안하여 토성속(textural family), 배수등급(drainage class), 불투수층(impermeable layer), 투수성(permeability)의 네가지 토양특성을 분류특성으로 하여 각각에 1-4점 범위로 점수를 매긴 후 합산한 점수를 기준으로 수문학적 토양유형을 분류하는 것이다. 최근에는 토양의 한계침투속도에 따라 수문학적 토양유형을 분류하고자 하는 시도가 있으며 본 논문에서는 새로운 방법으로 분류할 때 기존의 방법과 어떠한 차이가 있는지 비교하고자 하였다. 정 등(1995)의 분류방법은 개념상 몇가지 문제점을 안고 있다. 먼저 토양의 수리특성은 같은 토성속이라 하여도 토양생성 과정과 토지이용 방법에 따라 그 차이가 매우 큼에도 불구하고 이에 대해 고려하지 못하였으며 다음으로 지표유거가 많아 배수가 양호한 토양의 강우 유출을 과소평가한다. 또한 얕은 토심에 존재하는 불투수층이 존재하는 경우 토양의 수리특성에 관계없이 적은 양의 강우에도 유출이 발생하므로 별도의 제한인자로 간주하여야 한다. 토양의 한계 침투속도를 이용한 분류방법은 이러한 문제점을 상당 부분 개선할 수 있다. 토양의 한계침투속도를 산정하기 위해 현장에서 지표 한계침투속도와 투수속도를 측정하였으며 이 자료를 확장하여 해석하기 위해 입자특성을 이용한 Pedo Transfer Function을 개발하였다. 토심 50 cm 포화시 토양 투수성을 한계 침투속도로 가정하였으며 50 cm 이내에 암반층과 지하수위가 존재할 경우 투수성에 관계없이 D유형으로 분류하였다. 새로운 방법으로 분류한 결과 기존의 분류와 몇가지 차이점이 발견되었다. 가장 큰 차이는 대부분의 논토양이 느린 한계침투속도의 영향으로 D유형에 속한 것이다. 산림토양과 밭토양은 기존 방법과 마찬가지로 A, B유형이 많았으며 암반층을 고려하기 전에는 기존 분류에 비해 강우 유출 가능성이 적은 쪽으로 평가되었다. 그러나 암반층이 존재하는 토양을 고려한 결과 A 또는 B 유형에 속하던 상당수의 산림토양이 새로운 분류에서 D유형으로 분류되었다. 지표 유거가 많아 배수등급이 매우양호로 분류되던 토양은 정 등(1995)의 분류와 비교하여 대부분 강우 유출 가능성이 큰 쪽으로 조정되었다. 새로운 수문학적 토양유형을 이용할 경우 낮은 토심에서 암반층이 발견되는 산림토양이 분포한 유역이나 산림, 밭 등에 식질 토양이 많이 분포하는 유역에서는 기존의 방법을 이용하는 것보다 강우 유출량이 높게 평가될 것으로 판단된다. 앞으로 강우 유출량 실측자료와의 비교를 통해 지속적인 보정을 하여야 할 것이며 특히 불투수층의 존재시 일괄적으로 D유형으로 분류된 토양의 경우 깊이에 따라 C 또는 D 유형으로 세분하여 조정할 필요가 있다.
데이터 마이닝에서 데이터를 효율적으로 분류하고자 할 때 많이 사용하고 있는 알고리즘을 실제 자료에 적용시켜 분류성능을 비교하였다. 분류자 생성기법으로는 의사결정나무기법 중의 하나인 CART, 배깅과 부스팅 알고리즘을 CART 모형에 결합한 분류자, 그리고 SVM 분류자를 비교하였다. CART는 결과 해석이 쉬운 장점을 가지고 있지만 데이터에 따라 생성된 분류자가 다양하여 불안정하다는 단점을 가지고 있다. 따라서 이러한 CART의 단점을 보완한 배깅 또는 부스팅 알고리즘과의 결합을 통해 분류자를 생성하고 그 성능에 대해 평가하였다. 또한 최근 들어 분류성능을 인정받고 있는 SVM의 분류성능과도 비교?평가하였다. 각 기법에 의한 분류 결과를 가지고 의사결정나무를 형성하여 자료가 가지는 데이터의 특성에 따른 분류 성능을 알아보았다. 그 결과 데이터의 결측치가 없고 관측값의 수가 적은 경우는 SVM의 분류성능이 뛰어남을 알 수 있었고, 관측값의 수가 많을 때에는 부스팅 알고리즘의 분류성능이 뛰어났으며, 데이터의 결측치가 존재하는 경우는 배깅의 분류성능이 뛰어남을 알 수 있었다.
본 연구에서는 나무구조의 분류분석에서 자료의 크기가 방대해짐에 따라 중요한 문제로 대두되고 있는 변수의 중요도에 대하여 사영추적분류나무를 중심으로 고찰하였다. 사영추적분류나무(projection pursuit classification tree)는 각 마디에서 사영추적을 이용하여 그룹을 잘 분리하는 변수들의 선형결합을 이용하는 방법으로 이때 사용되는 사영계수들은 각 마디에서의 분류에 대한 정보를 가지고 있다. 이를 종합하여 각 변수의 분류에 대한 중요도를 계산할 수 있다. 먼저 사영추적분류나무의 분류과정에서 계산되는 사영추적계수를 이용하여 분류를 위한 변수선택의 중요도를 계산하고 이들의 특성을 살펴보고 이를 같은 형태의 나무모형방법인 CART와 랜덤 포레스트의 결과와 비교 분석하여 사영추적분류나무의 특성을 살펴보고 비교, 분석하였다. 대부분의 자료에서 사영추적분류나무가 훨씬 좋은 성능을 보이고 있었으며 특히 상관계수가 높은 변수들이 포함되어 있는 경우에는 상대적으로 적은 수의 변수로도 잘 분류를 할 수 있음을 확인하였다. 랜덤 포레스트에서 제공하는 변수 중요도는 변수들 간의 상관관계가 높은 경우에는 사영추적분류나무의 변수중요도와 매우 다르게 나타나며 사영추적분류나무의 변수 중요도가 조금 더 나은 성능을 보이고 있음을 알 수 있다.
본 연구에서는 FTA 및 퍼지 FTA 방법을 프로그래밍이 용이한 규칙-기반 지식 표현 방법으로 프로그래밍을 설계하기 위한 것으로, FAT 방법에 필요한 전문지식들을 처 리하기 위하여 객체지향 접근방법으로 FTA 를 설계하였다. FTA의 구성요소들에 대한 자료구조는 다음과 같이 세가지 형태로 분류할 수 있다. 1)구성요소들의 자료구조가 확정적인 값으로 나타나는 경우 2)구성요소들의 자료구조가 부정확한 값으로 나타나는 경우 3)구성요소들의 자료구조가 확정적인 값 및 부정확한값으로 동시에 주어진 경우로 나타날 수 있다. 본 연구에서는 객체지향적 펴지 FTA 전문가 시스템(FFTAES: Fuzzy FTA Expert System)을 활용하여 세 번째 형태인 구성요소들의 자료구조가 확정적인 값 및 부 정확한 값이 동시에 주어진 경우를 정량적으로 고장안전진단을 실시할 수 있도록 설계 하였다.
1985년-2004년 동안의 재해연보 자료를 전산화하여 필요한 자료를 프로그램을 이용하여 추출하고 분석할 수 있도록 자연재해 Database를 Table 2와 같이 구축하였다. 이 DB는 매년 발생하는 피해에 대하여 updata 해야 하는 자료이므로 피해액을 당해연도 기준으로 사용하였으며, 기존의 재해연보를 입력하는 과정에서 총 피해액 합계의 오류와 지난 20년간의 행정구역의 변화를 재정리한데 의의가 있다. 또한 기상연보와 재해연보를 비교하는 과정에서 재해 발생빈도가 원인별로 일치하지 않은 점을 발견하여 기상연보에는 있으나 재해연보에는 없는 사건을 DB에 추가하였다. DB를 구축하는데 있어 가장 어려운 부분은 용어와 분류에 대한 기준을 정하는 과정과 사용하는 자료마다 수치가 달랐다는 점이다. 자연재해 피해 자료를 기재하는 일정한 기준을 마련하여 앞으로 만들어질 피해자료가 좀 더 체계적으로 분류되어야 한다. 또한 김해시에서 1,000억원이 넘는 피해를 입힌 호우와 태풍 사례에 대하여 우심지역으로 분석된 한림면과 상동면, 생림면은 김해시 내에서도 특히 사전재해저감계획을 수립하여 매년 같은 피해를 입지 않도록 노력해야 한다.
현장 접근이 제한되어 있는 동부해안 접경지역의 지형조사 과정에서 IKONOS 위성영상과 수치지도 등의 원격탐사자료와 현장조사 자료를 이용하여 지형분류를 시도하였다. 조사결과는 위성영상자료를 활용하여 조사지역 전체를 면사상의 단위지형으로 분류하였다. 조사지역에서 나타나는 특징적인 지형은 해안사주, 해안사구, 석호, 육계사주와 육계도 등으로 구성된 해안지형과 하천습지와 석호, 하구습지 등으로 구성된 습지지형이다. 이 일대의 지형은 규모에 비해 지형요소의 유기적인 안정성이 높아 그 가치가 높게 평가된다.
본 연구는 지상라이다 자료에서 얻어진 색상정보(R, G, B)와 반사강도정보(I)를 동시에 이용하여 이를 통계학적 분류기법으로 서로의 연관성을 분석하여 라이다 자료에 대한 분류방법을 제시하였다. 이를 위하여 우선 변수 R,G,B 및 I를 사용하여 분산 을 극대화하는 요인을 추출하여 주요인과 각 변수들 간의 요인행렬을 산출하였다. 그러나 요인행렬은 기초자료를 축소시켜 보여주기는 하지만, 이로부터 어떤 변수들이 어떤 요인에 의해 높게 관계되는지 명확하게 알기 어렵기 때문에 직각회전방식 중에서 Varimax방법을 이용하여 회전된 요인행렬을 구하여 요인점수를 산출하였다. 그리고 비 계층적 군집화 방법인 K-평균법을 이용하여 요인분석으로 산출된 요인점수에 대하여 군집분석을 실시한 후, 지상라이다 자료의 분류 정확도를 평가하였다.
최근 수치표고모델(DEM : Digital Elevation Model)을 구축하기 위한 목적으로 항공레이저측량(LiDAR : Light Detection And Ranging) 기술이 주목받고 있다. DEM은 항공레이저측량으로부터 획득된 라이다 데이터에서 지면점만 추출한 수치지면자료(DTD : Digital Terrain Data)의 정확성에 의해 그 품질이 좌우된다. 하지만 원시자료에서 수치지면자료를 추출하기 위한 자동 필터링 작업은 필터링 알고리즘의 한계 및 라이다 데이터의 고유한 특성으로 인하여 항상 오분류 영역이 발생한다. 따라서 이를 보완하기 위해서는 작업자에 의한 수동분류 작업이 반드시 필요하다. 본 연구에서는 수동 작업이 원활하게 이루어 질 수 있도록 자동 필터링 작업에서 얻어진 수치지면자료에서 오분류 될 가능성이 있는 영역을 자동으로 탐지하는 알고리즘을 제안한다. 제안된 알고리즘은 2D 격자 구조를 적용하였으며 'Slope Angle', 'Slope DeltaH', 'NNMaxDH(Nearest Neighbor Max Delta Height)'로 명명한 매개변수를 사용하였다. 실험 결과, 제안된 알고리즘은 지형형태나 라이다 데이터 평균 점밀도에 제한받지 않는 안정적인 결과를 보여주었다.
본 연구에서는 1985년 10월 Landsat TM 자료와 팬크로매틱 영상인 2000년 1월 KOMPSAT-1 EOC 자료를 사용하여 각각 토지피복분류를 행하고 도시의 변화 검출을 시도하였다. 다중분광영상인 Landsat TM 자료는 30m 공간해상도로서 토지피복, 식생분류, 도시성장 분석 등의 정보 추출에 유용한 것으로 이미 널리 인식되어 있는 반면, KOMPSAT-1 EOC 자료는 6.6m의 팬크로매틱 고해상도 영상으로서 이 영상으로부터 어느 정도 토지피복분류를 수행할 수 있는가를 분석하고자 하였다. 연구 결과, KOMPSAT EOC 자료가 Landsat TM 자료에 비하여 더 높은 분류도를 나타내었으며, 1985년부터 2000년 사이에 대상도시의 시가지는 4배로 확장된 반면 산림지는 되었고 15~27%, 농경지는 28~45% 축소된 것으로 확인되었다.
광대역 주파수변조(wide-band FM) 선호를 음원으로 사용하는 Chirp sonar 시스템을 이용하여 획득한 음향반사 자료의 통계학적 처리를 통하여 해저면을 분류하였다. 음향학적 분류변수로서 Chirp 자료의 K-L(Karhunen-Lo$\grave{e}$ve) 변환을 이용하여 계산된 유사도 지수(similarity index)를 고안하였다. 유사도 지수는 근접한 트레이스 자료들에 포함된 공통된 반사신호성분의 양을 지시하므로 해저면 퇴적물의 성분에 따른 음향학적 거침도를 반영한다고 할 수 있다. 유사도 지수는 0에서 1사이의 값을 가지며, 각기 다른 퇴적상을 나타내는 지점에서 획득된 Chirp 자료를 처리한 결과, 퇴적물의 성분이 균질할수록, 입자의 크기가 작을수록, 그리고 연한 퇴적층일수록 증가하는 것을 관측할 수 있었다. 실제의 응용 예로서 제주도 성산포 해역을 이 방법으로 분류하였으며, 그 결과를 검증하기 위해 동일해역에서 획득된 side-scan sonar 자료 및 퇴적물로부터 해석된 해저면의 퇴적상과 비교하였다. 그 결과 음향자료의 유사도 지수에 의해 분류된 해저면은 실제의 퇴적상을 매우 잘 반영할 뿐만 아니라 퇴적물 성분의 특성에 따른 음향반응을 더욱 세밀히 나타내었다. 그러므로 이러한 방법은 음향자료로부터 직접 해저면을 분류하는 지질음향 모델링으로서 매우 효과적이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.