• Title/Summary/Keyword: 자력탐사기

Search Result 20, Processing Time 0.022 seconds

Physical property analysis of sediments for development of maritime archaeological survey techniques (수중문화재 탐사기법 개발을 위한 퇴적물 물성분석)

  • Kim, Sung-Bo;Ko, Eun-Ji;Jung, Yong-Hwa;Lee, Young-Hyun;Kim, Jin-Hoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.333-341
    • /
    • 2014
  • Since distribution and preservation of cultural artifacts in the submarine sediments are directly affected by not only ocean currents and tides, but also their composition, it is very important to investigate geological characteristics of sediments and ocean-sediment interactions for maritime archaeological survey. Physical properties of submarine sediments, which are collected by grab sampler and vibro-corer, are analyzed in order to investigate effects of submarine environment on development of maritime archaeological survey techniques. Result of physical property analysis showed that bulk density, shear strength, and magnetic susceptibility increase with depth, while water contents and porosity decrease with depth. Since the magnetic susceptibility of bedrock is about 40 times that of submarine sediments, it might impact greatly on the response of magnetic survey. Physical properties of sediments with depth and sediment classification by Folk's ternary diagram indicate that submarine sediment mainly consists of silt, and cultural artifacts can not penetrate no deeper than 1.5 m in sediments.

A small ocean bottom electromagnetometer and ocean bottom electrometer system with an arm-folding mechanism (Technical Report) (팔-접힘 구조를 가지는 소규모 OBEM과 OBE시스템 (기술보고서))

  • Kasaya, Takafumi;Goto, Tada-nori
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • Natural magnetic fields are attenuated by electrically conductive water. For that reason, marine magnetotelluric surveys have collected data at long periods (1000-100 000 s). The mantle structure has been the main target of seafloor magnetotelluric measurements. To ascertain crustal structure, however, electromagnetic data at shorter periods are important, e.g. in investigations of megathrust earthquake zones, or in natural resource surveys. To investigate of the former, for example, electromagnetic data for periods of less than 1000 s are necessary. Because no suitable ocean bottom electromagnetometer (OBEM) has been available, we have developed a small OBEM and ocean bottom electrometer (OBE) system with a high sample rate, which has an arm-folding mechanism to facilitate assembly and recovering operations. For magnetic observation, we used a fluxgate sensor. Field observations were undertaken to evaluate the field performance of our instruments. All instruments were recovered and their electromagnetic data were obtained. Results of the first experiment show that our system functioned well throughout operations and observations. Results of other field experiments off Tottori support the claim that the electromagnetic data obtained using the new OBEM and OBE system are of sufficient quality for the survey target. These results suggest that this device removes all instrumental obstacles to measurement of electromagnetic fields on the seafloor.

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.

Geophysical study on the summit of the Dokdo volcano (독도화산체 정상부에 대한 지구물리학적 조사 연구)

  • Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Jou, Hyeong-Tae;Lee, Seung-Hoon;Kim, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.207-212
    • /
    • 2008
  • Bathymetry, side scan sonar, and magnetic survey data for the summit area of Dokdo obtained by Korea Ocean Research & Development Institute in 1999, 2004, and 2007 were analyzed to investigate the geophysical characteristics of the summit. Bathymetry and topographic data for the summit of Dokdo show uneven seabed and irregular undulations from costal line to -90 m in water depth, indicating the effects of partial erosions and taluses. The stepped slope in the bathymetry is supposed to be a coastal terrace suggesting repetition of transgressions and regressions in the Quaternary. The bathymetry and the side scan sonar data show a small crater, assumed to be formed by post volcanisms, at depth of $-100\;{\sim}\;-120\;m$ in the northeastern and the northwestern parts of the survey area. Except some areas with shallow sand sedimentary deposits, there are rocky seafloor and lack of sediments in the side scan sonar images of the survey area, dominantly. The analytic signal of the magnetic anomaly coincides with other geophysical results regarding to the location of the residual crater. The geophysical constraints of the summit of Dokdo propose that the islets and the rocky seabed elongated northeastward and northwestward from the islets might be the southern crater of the Dokdo volcano.

  • PDF

Characteristics of Fe-Mn Mineralization in Ugii Nuur and Tamir Gol, Mongolia (몽골 우기누르와 타미르골의 철-망간 부존 특성)

  • Lee, Bum Han;Park, Gye Soon;Kim, In Joon;Lee, Gilljae;Heo, Chul-Ho;Koh, Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.313-322
    • /
    • 2012
  • 몽골 우기누르 지역 철-망간 광상과 타미르골 지역 철 광상의 광체는 먼곤체지 층 내에 렌즈상으로 협재되는 특성을 갖는다. 이러한 광상은 캠브리아 기에서 실루리아기에 이르는 화산 기원의 퇴적형 광상인 타미르골-요루골 광상구에 해당된다. 우기누르 지역의 철-망간 광체와 타미르골 지역의 철광체는 주로 규암과 편암을 모암으로 하여 먼곤체지 층 내에 렌즈상으로 협재되어 있다. 우기누르지역의 편암이 주로 세리사이트 편암인 데 비해 타미르골 지역은 주로 백운모 편암이 나타나는 차이를 갖는다. 또한 우기누르 지역의 광석은 망간이10에서 12% 함유되나 타미르골 지역의 광석은 망간이 1% 이하로 함량이 낮은 특성을 갖는다. 우기누르 철 망간 광상의 철 광물은 주로 자철석, 적철석이 우세하게 나타나고 기타 철 산화물과 황철석이 미량으로 수반되어 나타나며, 망간 광물은 주로스페사틴, 버네사이트가 우세하게 나타나고 기타망간 산화물이 수반되어 나타난다. 타미르골 지역의 철 광석은 자철석이 우세하게 나타나고 적철석이 수반되며 황철석, 철 산화물, 탄산질 철 등이 미량으로 수반되어 나타난다. 우기누르 철-망간 광상에 대한 육상 자력탐사 결과 높은 자기 이상값을보이는 영역이 지표에서 확인된 광체의 방향과 같은 약 $N30^{\circ}W$ 방향으로 나타나며 지표에서 확인된 광체 이외에 지표에 드러나지 않은 부분에서도 연장되는 것이 확인되었다.

Geoscientific land management planning in salt-affected areas* (염기화된 지역에서의 지구과학적 토지 관리 계획)

  • Abbott, Simon;Chadwick, David;Street, Greg
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.98-109
    • /
    • 2007
  • Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

A Study on Geophysical Characteristics and Regional Geological Structures of the Southwestern Yellow Sea of Korea using Gravity and Magnetic Data (중력 및 자력자료를 이용한 황해 남서부해역의 지구물리학적 특성 및 광역 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2010
  • Gravity and Magnetic survey data were analyzed to investigate the geophysical characteristics and regional geological structures of the southwestern Yellow Sea. The set of data about the southwestern part of the Yellow Sea in Korea was one collected by the Korea Ocean Research and Development Institute (KORDI) in 2003, 2004, and 2005. The Yellow Sea has a few basins and the study area also includes parts of the Heuksan Basin and the East China Sea Basin. The bathymetry of the study area ranges from about ?40 m southwestward near China to about 150 m northeastward near Korea. The bathymetry has the gentle rise and fall and the smooth slope. The gravity anomalies, from sea surface gravity and satellite gravity data, reflect the basement rocks rather than the smooth bathymetry. The gravity anomalies are higher on Northeastern part of the study area and lower over the South of the Heuksan Basin. The analytic signal from the Bouguer anomaly shows higher anomalous zones near the boundaries of the basins. The magnetic anomalies and the analytic signal, from the magnetic data, suggest that the complex anomalies on the Northern part are attributed to the volcanic intrusions and that the smooth patterns in the Southern part are based on the lack of the intrusions. The power spectrum analysis of the Bouguer anomalies and the magnetic anomalies indicate that the depth to the Moho discontinuity varies from about 30.2 to 28.3 km and that the depths of the basement rocks and the Eocene discontinuity range from about 8.4 to 8 km and from about 1.5 to 1.7 km, respectively. The inversion of the Bouguer anomaly shows that the Moho depth to the Western part of the study area near China is slightly deeper than the Eastern part near Korea. The result of 2-D gravity modeling has a good coherence with the results of the analytic signal, the power spectrum analysis, and the inversion.

Geomagnetic Field Properties and Magnetic Interpretation in the Southern Part of the Ulleung Basin (鬱陵盆地 남단해역의 地磁場 特性 및 磁氣異常 解析)

  • 박찬홍;석봉출
    • 한국해양학회지
    • /
    • v.26 no.2
    • /
    • pp.117-132
    • /
    • 1991
  • Marine total magnetic intensity over the southern part of the Ulleung Basin and geomagnetic data measured at a land base station are analyzed. Fourteen days observation of geomagnetic field at a fixed on-land base station showed how the geomagnetic field around the study area behaves. geomagnetic data at the base station can also be used as correction data for a diurnal variation. Magnetic anomalies in the study area do not reflect an effect of sea bottom topography but mainly subsurface basement. The southern part of the Ulleung Basin can be devided into two zones according to a different anomaly pattern; along the coastal shelves the isolated anomalies with a short wave and a strong amplitude are dominant, and toward the open sea the anomalies become much more subdued. The high anomaly zone adjoined to land is interpreted to be caused by granitic intrusives or volcanic rocks, and the weak anomaly zone to the outer sea to be arisen from an existence of deep basement. A spectrum analysis is applied to estimate magnetic basement depths from three anomaly profiles with a long period and a weak amplitude toward the outer sea. The calculated depths are 7.0km, 5.0km, and 2.6km respectively from outer profile. The basement might be correlated with the mixed layer of tuff, basalt, and sediment, which had been defined as L-2 layer in the Yamato basin and the Japan Basin.

  • PDF

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.