• Title/Summary/Keyword: 자동 음성인식

Search Result 247, Processing Time 0.023 seconds

Cyber Threats Analysis of AI Voice Recognition-based Services with Automatic Speaker Verification (화자식별 기반의 AI 음성인식 서비스에 대한 사이버 위협 분석)

  • Hong, Chunho;Cho, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Automatic Speech Recognition(ASR) is a technology that analyzes human speech sound into speech signals and then automatically converts them into character strings that can be understandable by human. Speech recognition technology has evolved from the basic level of recognizing a single word to the advanced level of recognizing sentences consisting of multiple words. In real-time voice conversation, the high recognition rate improves the convenience of natural information delivery and expands the scope of voice-based applications. On the other hand, with the active application of speech recognition technology, concerns about related cyber attacks and threats are also increasing. According to the existing studies, researches on the technology development itself, such as the design of the Automatic Speaker Verification(ASV) technique and improvement of accuracy, are being actively conducted. However, there are not many analysis studies of attacks and threats in depth and variety. In this study, we propose a cyber attack model that bypasses voice authentication by simply manipulating voice frequency and voice speed for AI voice recognition service equipped with automated identification technology and analyze cyber threats by conducting extensive experiments on the automated identification system of commercial smartphones. Through this, we intend to inform the seriousness of the related cyber threats and raise interests in research on effective countermeasures.

A Study of Automatic Evaluation Platform for Speech Recognition Engine in the Vehicle Environment (자동차 환경내의 음성인식 자동 평가 플랫폼 연구)

  • Lee, Seong-Jae;Kang, Sun-Mee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.538-543
    • /
    • 2012
  • The performance of the speech recognition engine is one of the most critical elements of the in-vehicle speech recognition interface. The objective of this paper is to develop an automated platform for running performance tests on the in-vehicle speech recognition engine. The developed platform comprise of main program, agent program, database management module, and statistical analysis module. A simulation environment for performance tests which mimics the real driving situations was constructed, and it was tested by applying pre-recorded driving noises and a speaker's voice as inputs. As a result, the validity of the results from the speech recognition tests was proved. The users will be able to perform the performance tests for the in-vehicle speech recognition engine effectively through the proposed platform.

Deep learning-based speech recognition for Korean elderly speech data including dementia patients (치매 환자를 포함한 한국 노인 음성 데이터 딥러닝 기반 음성인식)

  • Jeonghyeon Mun;Joonseo Kang;Kiwoong Kim;Jongbin Bae;Hyeonjun Lee;Changwon Lim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.33-48
    • /
    • 2023
  • In this paper we consider automatic speech recognition (ASR) for Korean speech data in which elderly persons randomly speak a sequence of words such as animals and vegetables for one minute. Most of the speakers are over 60 years old and some of them are dementia patients. The goal is to compare deep-learning based ASR models for such data and to find models with good performance. ASR is a technology that can recognize spoken words and convert them into written text by computers. Recently, many deep-learning models with good performance have been developed for ASR. Training data for such models are mostly composed of the form of sentences. Furthermore, the speakers in the data should be able to pronounce accurately in most cases. However, in our data, most of the speakers are over the age of 60 and often have incorrect pronunciation. Also, it is Korean speech data in which speakers randomly say series of words, not sentences, for one minute. Therefore, pre-trained models based on typical training data may not be suitable for our data, and hence we train deep-learning based ASR models from scratch using our data. We also apply some data augmentation methods due to small data size.

Speech Recognition Error Detection Using Deep Learning (딥 러닝을 이용한 음성인식 오류 판별 방법)

  • Kim, Hyun-Ho;Yun, Seung;Kim, Sang-Hun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.157-162
    • /
    • 2015
  • 자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.

  • PDF

An Experimental Speech Translation System for Hotel Reservation (호텔예약을 위한 자동통역 시스템)

  • 구명완;김웅인;김재인;도삼주;강용범;박상규;손일현;김우성;장두성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.105-108
    • /
    • 1995
  • 한국에 있는 손님이 한국어 만을 사용하여 일본 호텔을 예약할 수 있도록 해 주는 한일간 자동통역 시연 시스템에 관해 기술하였다. 이 시스템은 한국어 음성인식부, 한일 기계번역부, 한국어 음성합성부로 구성되어 있다. 한국어 음성인식부는 기본적으로 HMM을 이용하는 화자독립, 약 300단어급 연속음성인식 시스템으로서 전향 언어 모델로 바이그램 언어 모델, 후향 언어 모델로는 의존 문법을 사용하여 N-BEST 문장을 생성해낸다. 실험결과, 단어 인식률은 top1 문장에 대해 약 94.5%, top5 문장에 대해 약 94.7%의 인식률을 얻었다. 인식 시간은 길이가 다른 여러 문장들에 대해 약 0.1~3초가 걸렸다. 기계번역부에서는 음성인식에서 의존 문법을 사용하여 분석된 파싱 결과를 이용, 직접 번역 방식을 채택하여 일본어를 생성한다. 음성 합성부는 반음소를 합서의 기본단위로 하고, 합성방식으로는 주기 파형 분해 및 재배치 방식으로 하였다. 실험 환경은 2 CPU를 장착한 SPARC 20 workstation 이었으며 실시간 특징 추출을 위해 TMS320C30 DSP 보드 1개를 이용하였다.

  • PDF

Auto-Segmentation of Unsegmented Speech based on HMM and Time-Synchronous Viterbi Algorithm (시간동기형 Viterbi 알고리즘과 HMM에 기반한 음성의 자동 세그멘테이션)

  • 오세진;황철준;김범국;정호열;정현열
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.592-594
    • /
    • 2001
  • 본 연구에서는 음성인식에 있어서 음향모델의 고정도화를 위해 통계적 방법인 HMM과 시간동기형 Viterbi 알고리즘을 기반으로 한 세그멘트되지 않은 음성의 자동 세그멘테이션에 관한 연구를 수행하였다. 본 연구에서는 소량의 세그멘트된 음성에 대해 연속분포형 HMM 기본모델을 작성한 후 이를 표준패턴으로 사용하고, 세그멘트되지 않은 입력음성의 특징 피라미터에 대해 시간동기형 Viterbi 알고리즘의 프레임마다 최대가 되는 지점을 최적경계로 설정하고, 앞에서 구현 최적 경계 정보와 언어학적 지식인 발음사전 정보를 이용하여 음성을 세그멘테이션 하는 것이다. 본 연구와의 비교를 위해 HTK를 이용하여 위와 동일한 과정을 수행하였다. 이렇게 구한 음성의 세그멘테이션 정보를 이용하여 연속분포형 HMM 기본모델과 HTK의 CHMM 기본모델을 각각 작성한 후, 국어공학센터(KLE) 단어 데이터에 대해 단어인식 성능을 평가하였다. 실험결과, KLE 452 남성과 여성에 대해, 본 연구실 인식 시스템은 화자독립 단어인식률 89.4%, 85.1%, HTK의 화자독립 단어인식률 85.1%, 81.9%를 각각 얻었다.

  • PDF

Automatic segmentation for continuous spoken Korean language recognition based on phonemic TDNN (음소단위 TDNN에 기반한 한국어 연속 음성 인식을 위한 데이타 자동분할)

  • Baac, Coo-Phong;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.30-34
    • /
    • 1995
  • 신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.

  • PDF

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

Introduction to Speech Recognition using Neural Networks (신경망을 이용한 음성인식의 안내)

  • Jeong, Hong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.43-45
    • /
    • 1992
  • 한국의 HAN 인공지능(人工知能)컴퓨터과제나 일본의 NIPT나 성사를 가름할 수 있는 기술 중의 하나가 컴퓨터에 의한 음성인식(音聲認識)의 성공여부이다. 그러나 자동음성인식은 화자독립(話者獨立), 연속음성(連續音聲) 무제한(無制限) 어휘(語彙) 처리라는 세가지 난관을 아직 극복하고 있다. 현재 DTW나 HMM 시스팀은 계속 개선되고있으나 근본적으로 한계가 있다고 보인다. 이와같은 이유로 신경망을 이용한 음성인식연구가 급속히 확산되고 있다. 이와 같은 추세에 따라 본 심포지움에서는 신경망을 이용한 음성인식에 대해 소개한다.

  • PDF

국내외 음성 인식 기술 동향 및 전망

  • 김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.58-63
    • /
    • 1991
  • 앞으로 추진될 자동통역 전화시스템 개발의 수행을 돕기위해 현재까지 개발되어온 국내외 음성인식 기술 및 현황에 대해 기술한다

  • PDF