• Title/Summary/Keyword: 자동화 장치 크레인

Search Result 25, Processing Time 0.025 seconds

Yard Crane Dispatching for Remarshalling in an Automated Container Terminal (자동화 컨테이너 터미널에서 이적작업을 위한 장치장 크레인 작업할당)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.665-671
    • /
    • 2012
  • A remarshalling is studied as an important operational strategy in an automated container terminal to enhance the productivity of container handling. This means the rearrangements of the containers scattered at a vertical yard block. The dispatching problem for remarshalling is selecting the remarshalling operation considering the available operation time and deciding the operation sequencing to maximize the effectiveness of remarshalling. This study develops the optimal mathematical model for yard crane dispatching problem with mixed integer program and explains dispatching problem using an example. However it is difficult to apply this model to a field problem because of its computational time. Therefore, we compare the representative 5 dispatching rules for real world adaption. In a numerical experiment, maximum weight ratio(MR) rule shows an overall outstanding performance.

Simulation-based Evaluation of Container Stacking Strategy for Horizontal Automated Block (자동화 수평 배치 블록을 위한 시뮬레이션 기반 컨테이너 장치 전략 평가)

  • Kim, Min-Ju;Park, Tae-Jin;Kang, Jae-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.359-367
    • /
    • 2005
  • In order to increase the productivity of container terminals, automation is being considered seriously in nowadays. A yard is usually automated by running autumated RMGs (rail mounted gantries) which may require somewhat a different stacking strategy to archive a better performance. In this paper, we present a simulation model for RMGs and summarize experimental results with two different stacking strategies applied to a horizontal block which has two non-crossable RMGs. The concentrating strategy, which stacks containers belong to a single ship together and dedicateds each RMG to either ship services or external truck services, showed a good performance in ship unloading. In the contrast, the distributing strategy, which partitions a block into two regions and binds each RMG to one of the regions to improve the productivity of ship services by running each RMG alternately, is suggested for blocks of exporting.

  • PDF

Planning for Intra-Block Remarshaling to Enhance the Efficiency of Loading Operations in an Automated Container Terminal (자동화 컨테이너 터미널의 적하 작업 효율 향상을 위한 블록 내 재정돈 계획 수립 방안)

  • Park, Ki-Yeok;Park, Tae-Jin;Kim, Min-Jung;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.31-46
    • /
    • 2008
  • A stacking yard of a container terminal is a space for temporarily storing the containers that are carried in or imported until they are carried out or exported. If the containers are stacked in an inappropriate way, the efficiency of operation at the time of loading decreases significantly due to the rehandlings. The remarshaling is the task of rearranging containers during the idle time of transfer crane for the effective loading operations. This paper proposes a method of planning for remarshaling in a yard block of an automated container terminal. Our method conducts a search in two stages. In the first stage, the target stacking configuration is determined in such a way that the throughput of loading is maximized. In the second stage, the crane schedule is determined so that the remarshaling task can be completed as fast as possible in moving the containers from the source configuration to the target configuration. Simulation experiments have been conducted to compare the efficiency of loading operations before and after remarshaling. The results show that our remarshaling plan is really effective in increasing the efficiency of loading operation.

  • PDF

Division of Work Regions for Operating the Yard in a Container Terminal (작업 영역 구분을 이용한 컨테이너 터미널의 장치장 운영 전략)

  • Ahn, Eun-Yeong;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.335-336
    • /
    • 2007
  • This paper propose a heuristic method that divides the block into some work regions to operate stacking cranes efficiently in a automated container terminal where the blocks with non-crossing stacking cranes(SC) are laid out in perpendicular to the quay. Typically, fund over between SCS and trucks occur at each side if the blocks, and each if the landside and seaside SCS is responsible for the jobs that occur at its own side. When a container to be fetched is located far from fund over point, the SC should move a long distance and the interference between the two cranes am occur, which decreases the productivity of the SCS. Therefore, our method divides the block into two exclusive and one shared regions and let the containers located far from their fund over points to be transferred to the shared region by the other side crane before they are carried out. Although simple this method am reduce the crane movement and the interference between the two cranes. Simulation experiment shows that our proposed method significantly improves the productivity if the container terminal than previous heuristic that does not divide work regions.

  • PDF

Dynamic Weight Adjustment Algorithms for Deriving Stacking Policies of Automated Container Terminals (자동화 컨테이너터미널의 장치 위치 결정을 위한 동적 가중치 조정 알고리즘)

  • Kim, Young-Hun;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.255-256
    • /
    • 2007
  • In case of inappropriate stacking position of the container taking in container yard, the working time for the container would be delayed in taking out because of the occurrence of the re-handle and the increase of the crane moving time. We have to take into account a variety of elements like the crane interference, the container group and stacking height in order to determine the optimal stacking position and decide the weight reflecting the importance of these criteria. We propose the dynamic weight adjustment algorithm for the stacking policy criteria employing the online search in this research.

  • PDF

Inter-bay Re-marshalling Planning in the Automated Container Terminal (자동화 컨테이너 터미널의 베이간 컨테이너 재배치작업 계획)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • The container terminal operators established a re-marshalling plan to reduce the loading operation time and the release operation time. Re-marshalling is to rearrange the containers in the container yard to the advantageous position to shorten the working time using the spare time of the automated yard crane. This study assumed the automated container terminal with a perpendicular layout and deals with the inter-bay re-marshalling planning problem in a yard block. The inter-bay re-marshalling plan determines the container to be moved, the location to be relocated, and the sequence of relocation operations. This study presents a mixed integer programming model that simultaneously determines the storage location and the operation sequence while satisfying the spatial availability during the re-marshalling. Numerical experiments are conducted to understand re-marshalling operation using a beam search method.

Optimization of Dispatching Strategies for Stacking Cranes Including Remarshaling Jobs (재정돈을 포함한 장치장 크레인의 작업 할당 전략 최적화)

  • Kim, Taekwang;Yang, Youngjee;Bae, Aekyoung;Ryu, Kwang Ryul
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.155-162
    • /
    • 2014
  • In container terminals, stacking yard is the place where import and export containers are temporarily stored before being loaded onto or after being discharged from a ship. Since all the containers go through the stacking yard in their logistic flow, the productivity of the terminal critically depends on efficient operation of stacking yard, which again depends on how well the stacking locations of the incoming containers are determined. However, a good location for stacking an incoming container later can turn out to be a bad one when that container is to be fetched out of the stacking yard, especially if some rehandling is required. This means that good locations for the containers are changing over time. Therefore, in most container terminals, the so-called remarshaling is done to move the containers from bad location to good locations. Although there are many previous works on remarshaling, they all assume that the remarshaling can be done separately from the main jobs when the cranes are idle for rather a long period of time. However, in reality, cranes are hardly available for a period long enough for remarshaling. This paper proposes a crane dispatching strategy that allows remarshaling jobs to be mixed together with the main jobs whenever an opportunity is detected. Experimental results by simulation reveals that the proposed method effectively contributes to the improvement of terminal productivity.

Determination of Object Position for Crane Automation (크레인 자동화를 위한 물체 좌표인식)

  • 박병석;권달안;김성현;윤지섭;노성기;정용만;정용만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1129-1132
    • /
    • 1995
  • Recently, the concept of automation is widely in shipping and unloading materials using the overhead crane for the enhanced productivity. In this regards, we designed an overhead crane that can be operated by operated by computer control system and installed this system at KAERI. In this paper, we introduce algorithms to find the 3D position, diameter, width, and rotated angle of objects such as drum, coil, and container. And the performance of the presented algorithms is tested using drum and container. The result will be useful for positoning grapple device such as spreader to objects in order to automatically grasp them.

  • PDF

Anti-Sway System for Automated Transfer Crane (자동 트랜스퍼 크레인을 위한 컨테이너 흔들림 장치)

  • 박찬훈;박경택;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1743-1746
    • /
    • 2003
  • Automated Container Terminals have been being developed over the world for many recent years and more and more countries get interested in it because the amount of containers exported or imported is steeply increasing. Existed Container Terminals were not designed to control this kind of heavily many containers. They would face many structural problems soon or later, although they have managed to do well until now. One of the most important things in developing Automated Container Terminal is to develop the equipment able to transfer the awfully many containers. Those are maybe Automated Transfer Cranes, Automated Guided Vehicles, and Automated Quay-Side Cranes. The word "Automated" means the equipment is operated without drivers and those equipments are able to work without taking any break. Through the researches on the existed transfer cranes, authors decided that the structure of existed transfer cranes is not proper to swift and fast transfer and it′s not impossible to handle so many containers in limited time. Therefore authors have been studying on the proper structure of the Automated Container Crane for past several years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.

  • PDF

Development of an Automated Gangform Climbing System for Apartment Housing Construction - Structural Stability and Tower Crane Lifting Load Analysis - (공동주택 전용 갱폼 인양 자동화 기술의 개발 - 구조적 안정성 및 타워크레인 양중부하 분석 -)

  • Lee, Jeong-Ho;Yang, Sang-Hoon;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.48-59
    • /
    • 2012
  • Gangform, compared to the traditional forms, is a systemized form which can reduce construction duration and cost by the advantage of using it repeatedly. However, transportation and climbing process of the Gangform is highly dependant on the performance of tower crane. Gangform climbing process takes one day out of six to seven days of a structural work cycle. Tower cranes can not be used in other lifting works when they lift the Gangform during the structural work cycle, causing the delay in the construction project. Numerous efforts and researches have been done in domestic and international industry to solve such limitations of Gangform climbing process. Especially, "A Study on the Development of Automatic Gangform Climbing System for Apartment Housing Construction"has suggested a conceptual model which can climb the Gangform system without a tower crane. In this paper, the technical and economical feasibilities of previously proposed Automatic Gangform climbing system are examined by evaluating its structural stability and lifting load reduction effect.