• Title/Summary/Keyword: 자동화된 기계 학습

Search Result 105, Processing Time 0.025 seconds

Image based Environmental information measuring system technology for building energy data collection (건물에너지 데이터 수집을 위한 영상 기반 환경 정보 측정 시스템 기술)

  • Kang, JeongHoon;Chae, Chulseoung;Kim, HyeongGoo;Gwon, DaeGil;Choi, HyoSeob;Lee, KeonHee;Park, Eun Ae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.605-608
    • /
    • 2019
  • 기계학습 기술을 이용하여 자동화된 데이터 수집 시스템을 적용하면, 기존 아날로그 측정기의 수치를 자동으로 인식 및 저장할 수 있으며, 재실 여부 등의 건물에서 발생하는 에너지 관련 현상을 데이터베이스로 구축하고, 이 데이터를 기반으로 효과적인 건물의 에너지 운전 방안을 제시할 수 있다. 본 내용은 기계 학습을 이용한 소프트웨어 기술이 건물 에너지 모니터링 시스템에 적용되는 장점에 대해 소개하고 적용에 따른 예상 효과를 기술한다.

온톨로지 자동 구축과 온톨로지를 위한 지속적 자기 개선 모델에 대한 연구

  • Kim, Yun-Deok;Kim, Gi-Beom;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.166-167
    • /
    • 2015
  • 수동적 온톨로지 구축은 해당 도메인의 지식을 가진 전문가가 필요하고, 시간적인 소모가 크다. 또한 완성된 온톨로지의 수동적인 지속적 개선은 상당한 비용을 초래할 수 있다. 그래서 온톨로지의 자동 구축과 지속적 자기 개선 방법이 하나의 해결책이 될 수 있을 것이다. 따라서, 이 논문에서는 기계 학습을 통한 온톨로지 구축의 자동화 방법과 지속적 자기 개선 모델을 소개하고자 한다.

  • PDF

딥러닝을 이용한 영상내 물체 인식 기법

  • Park, Je-Gang;Park, Yong-Gyu;On, Han-Ik;Gang, Dong-Jung
    • ICROS
    • /
    • v.21 no.4
    • /
    • pp.21-26
    • /
    • 2015
  • 지능형 시스템의 수요가 증가하면서 영상인식의 중요성이 부각되고 있다. 사람이 직접 물체 인식 과정을 모델링하는 방식을 넘어 최근에는 기계학습을 이용하여 이를 자동화하는 방법이 주를 이루고 있다. 그 중 딥러닝은 빅데이터를 활용하는 각종 분야에서 놀라운 성능을 보이며 기계학습 수준을 한 단계 진화시킨 기술로 평가 받고 있으며 영상 인식의 다양한 분야에서 응용되고 있다. 본 글에서는 딥러닝을 이용한 물체 검출 기법의 동향을 살펴보고 이를 차량 전면부 인식에 적용한 사례를 소개한다.

  • PDF

Recognition of Emotional State of Speaker Using Machine learning (SVM 을 이용한 화자의 감정상태 인식)

  • Lee, Na-Ra;Choi, Hoon-Ha;Kim, Hyun-jung;Won, Il-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.468-471
    • /
    • 2012
  • 음성을 통한 자동화된 감정 인식은 편리하고 다양한 서비스를 제공할 수 있어 중요한 연구분야라고 할 수 있다. 기계학습의 다양한 알고리즘을 사용하여 감정을 인식하는 연구가 진행되어 왔지만 그 성능은 아직 초보적 단계를 벋어나지 못하고 있는 실정이다. 앞선 연구에서 우리는 비감독 학습 방법으로 감성을 그룹화 하고 이것을 이용하여 다시 감독 학습을 하는 시스템을 소개 하였다. 본 연구에서 우리는 감독 학습 방법에서 사용했던 오류 역전파 알고리즘을 support vector machine(SVM) 으로 변경하고 몇 가지 구조를 변경하여 기능을 개선하였다. 실험을 통하여 성능을 측정하였으며 어느 정도 개선된 결과를 얻을 수 있었다.

Automated Smudge Attacks Based on Machine Learning and Security Analysis of Pattern Lock Systems (기계 학습 기반의 자동화된 스머지 공격과 패턴 락 시스템 안전성 분석)

  • Jung, Sungmi;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.903-910
    • /
    • 2016
  • As smart mobile devices having touchscreens are growingly deployed, a pattern lock system, which is one of the graphical password systems, has become a major authentication mechanism. However, a user's unlocking behaviour leaves smudges on a touchscreen and they are vulnerable to the so-called smudge attacks. Smudges can help an adversary guess a secret pattern correctly. Several advanced pattern lock systems, such as TinyLock, have been developed to resist the smudge attacks. In this paper, we study an automated smudge attack that employs machine learning techniques and its effectiveness in comparison to the human-only smudge attacks. We also compare Android pattern lock and TinyLock schemes in terms of security. Our study shows that the automated smudge attacks are significantly advanced to the human-only attacks with regard to a success ratio, and though the TinyLock system is more secure than the Android pattern lock system.

신경회로의 로보트 및 자동화 응용

  • 오세영
    • The Magazine of the IEIE
    • /
    • v.18 no.10
    • /
    • pp.29-38
    • /
    • 1991
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각 인식, 음성인식, 촉각 감지등 패턴 인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control)역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로봇 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어(neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적, 학습, 불확실한 환경에서의 적응, 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로봇나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시한 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로봇나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어(intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구개발 투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로봇 및 시스템 제어에 관한 기초 이론과 신경회로 적용기술을 소개하고 기존방법과 비교했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF

Detection of Abnormal Dam Water Level Data Based on Machine Learning (기계학습에 기반한 댐 수위 이상 데이터 탐지)

  • Bang, Suil;Lee, Do-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.293-296
    • /
    • 2021
  • K-water에서는 다목적댐의 관리를 위해 실시간으로 댐수위, 하천 수위 및 강우량 등을 계측하고 있으며, 계측된 값들은 댐을 효과적으로 운영하는데 필요한 데이터로 활용되고 있다. 특히 댐수위 이상 데이터를 탐지하지 못한 채 그대로 사용할 경우 댐의 방류 시기와 방류량 등을 결정하는 중요한 의사결정을 그르칠 수 있으므로 이를 신속히 탐지하는 것이 매우 중요하다. 현재의 자동화된 이상 데이터 탐지방법 중 하나는 현재 데이터가 최댓값과 최솟값을 초과할 때, 다른 하나는 현재 데이터와 일정 시간 동안의 평균값 간의 차이가 관리자가 정한 특정 값을 벗어났을 때를 기준으로 삼고 있다. 전자는 상한과 하한의 초과 여부만 판단하므로 탐지가 쉬우나 정상범위 내에서 발생한 이상 데이터는 탐지가 불가하다. 후자는 관리자의 경험을 통해 판단 조건을 정하기 때문에 객관성이 결여되는 문제가 있다. 특히 방류와 강우가 복합적으로 댐수위에 영향을 미치는 홍수기에 관리자의 경험에 기초한 이상 데이터 판별은 신뢰성의 문제가 있을 수 있다. 따라서 본 연구에서는 기계학습을 최초로 적용하여 이상 데이터를 탐지하고자 하였다. 댐수위, 누적강우량 및 누적방류량 데이터와 댐수위데이터를 가공하여 생성한 댐수위차, 댐수위차평균, 댐수위평균 등 자질들의 다양한 조합을 만든 후 이를 Random Forest, SVM, AdaptiveBoost 및 다층퍼셉트론(MLP) 등과 같은 여러 가지 기계학습모델 등을 통해 이상 데이터를 판별하는 실험(분류)을 하였다. 실험결과 댐수위, 댐수위차, 댐수위-댐수위평균, 누적강우량, 누적방류량 및 댐수위차평균을 사용하였을 때 MLP에서 가장 우수한 성능을 보였다. 이 연구를 통해서 댐수위 이상 데이터를 기계학습의 분류기능을 통해 효과적으로 탐지할 수 있다는 것과 모델의 성능은 실험에 사용한 자질의 수뿐 아니라 자질의 종류에도 큰 영향을 받는다는 것을 알 수 있었다.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Predicting Interesting Web Pages by SVM and Logit-regression (SVM과 로짓회귀분석을 이용한 흥미있는 웹페이지 예측)

  • Jeon, Dohong;Kim, Hyoungrae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.47-56
    • /
    • 2015
  • Automated detection of interesting web pages could be used in many different application domains. Determining a user's interesting web pages can be performed implicitly by observing the user's behavior. The task of distinguishing interesting web pages belongs to a classification problem, and we choose white box learning methods (fixed effect logit regression and support vector machine) to test empirically. The result indicated that (1) fixed effect logit regression, fixed effect SVMs with both polynomial and radial basis kernels showed higher performance than the linear kernel model, (2) a personalization is a critical issue for improving the performance of a model, (3) when asking a user explicit grading of web pages, the scale could be as simple as yes/no answer, (4) every second the duration in a web page increases, the ratio of the probability to be interesting increased 1.004 times, but the number of scrollbar clicks (p=0.56) and the number of mouse clicks (p=0.36) did not have statistically significant relations with the interest.

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.