• Title/Summary/Keyword: 자동탐지

Search Result 619, Processing Time 0.042 seconds

Detection of Harmful Images Based on Color and Geometrical Features (색상과 기하학적인 특징 기반의 유해 영상 탐지)

  • Jang, Seok-Woo;Park, Young-Jae;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5834-5840
    • /
    • 2013
  • Along with the development of high-speed, wired and wireless Internet technology, various harmful images in a form of photos and video clips have become prevalent these days. In this paper, we suggest a method of automatically detecting adult images by extracting woman's nipple areas which represent obscenity of the image. The suggested algorithm first segments skin color areas in the $YC_bC_r$ color space from input images and extracts nipple's candidate areas from the segmented skin areas through the suggested nipple map. We then select real nipple areas by using geometrical information and determines input images as harmful images if they contain nipples. Experimental results show that the suggested nipple map-based method effectively detects adult images.

Research on radar-based risk prediction of sudden downpour in urban area: case study of the metropolitan area (레이더 기반 도시지역 돌발성 호우의 위험성 사전 예측 : 수도권지역 사례 연구)

  • Yoon, Seongsim;Nakakita, Eiichi;Nishiwaki, Ryuta;Sato, Hiroto
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.749-759
    • /
    • 2016
  • The aim of this study is to apply and to evaluate the radar-based risk prediction algorithm for damage reduction by sudden localized heavy rain in urban areas. The algorithm is combined with three processes such as "detection of cumulonimbus convective cells that can cause a sudden downpour", "automatic tracking of the detected convective cells", and "risk prediction by considering the possibility of sudden downpour". This algorithm was applied to rain events that people were marooned in small urban stream. As the results, the convective cells were detected through this algorithm in advance and it showed that it is possible to determine the risk of the phenomenon of developing into local heavy rain. When use this risk predicted results for flood prevention operation, it is able to secure the evacuation time in small streams and be able to reduce the casualties.

HWbF(Hit and WLC based Firewall) Design using HIT technique for the parallel-processing and WLC(Weight Least Connection) technique for load balancing (병렬처리 HIT 기법과 로드밸런싱 WLC기법이 적용된 HWbF(Hit and WLC based Firewall) 설계)

  • Lee, Byung-Kwan;Kwon, Dong-Hyeok;Jeong, Eun-Hee
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.15-28
    • /
    • 2009
  • This paper proposes HWbF(Hit and WLC based Firewall) design which consists of an PFS(Packet Filter Station) and APS(Application Proxy Station). PFS is designed to reduce bottleneck and to prevent the transmission delay of them by distributing packets with PLB(Packet Load Balancing) module, and APS is designed to manage a proxy cash server by using PCSLB(Proxy Cash Server Load Balancing) module and to detect a DoS attack with packet traffic quantity. Therefore, the proposed HWbF in this paper prevents packet transmission delay that was a drawback in an existing Firewall, diminishes bottleneck, and then increases the processing speed of the packet. Also, as HWbF reduce the 50% and 25% of the respective DoS attack error detection rate(TCP) about average value and the fixed critical value to 38% and 17%. with the proposed expression by manipulating the critical value according to the packet traffic quantity, it not only improve the detection of DoS attack traffic but also diminishes the overload of a proxy cash server.

  • PDF

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

Early Alert System of Vespa Attack to Honeybee Hive: Prototype Design and Testing in the Laboratory Condition (장수말벌 공격 조기 경보 시스템 프로토타입 설계 및 실내 시연)

  • Kim, Byungsoon;Jeong, Seongmin;Kim, Goeun;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Vespa hornets are notorious predators of honeybees in Korean beekeeping. Detection of vespa hornet attacking on honeybee colony was tried through analysis of wing beat frequency profiling from Vespa mandarinia. Wing beat profiles of V. mandarinia during active flight and resting were distinctively different. From the wing beat profiling, algorithm of automated detection of vespa attack was encoded, and alert system was developed using Teensy 3.2 and Raspberry pi 3. From the laboratory testing, the prototype system successfully detected vespa wing beats and delivered the vespa attack information to the user wirelessly. Further development of the system could help precision alert system of the vespa attack to apiary.

Design and Implementation of a LSTM-based YouTube Malicious Comment Detection System (유튜브 악성 댓글 탐지를 위한 LSTM 기반 기계학습 시스템 설계 및 구현)

  • Kim, Jeongmin;Kook, Joongjin
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.18-24
    • /
    • 2022
  • Problems caused by malicious comments occur on many social media. In particular, YouTube, which has a strong character as a medium, is getting more and more harmful from malicious comments due to its easy accessibility using mobile devices. In this paper, we designed and implemented a YouTube malicious comment detection system to identify malicious comments in YouTube contents through LSTM-based natural language processing and to visually display the percentage of malicious comments, such commentors' nicknames and their frequency, and we evaluated the performance of the system. By using a dataset of about 50,000 comments, malicious comments could be detected with an accuracy of about 92%. Therefore, it is expected that this system can solve the social problems caused by malicious comments that many YouTubers faced by automatically generating malicious comments statistics.

Design and Implementation of an Automated Privacy Protection System over TPM and File Virtualization (TPS: TPM 및 파일 가상화를 통한 개인정보보호 자동화 시스템 디자인 및 구현)

  • Jeong, Hye-Lim;Ahn, Sung-Kyu;Kim, Mun Sung;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2017
  • In this paper, we propose the TPS (TPM-enhanced Privacy Protection System) which is an automated privacy protection system enhanced with a TPM (Trusted Platform Module). The TPS detects documents including personal information by periodic scanning the disk of clients at regular intervals and encrypts them. Hence, system manages the encrypted documents in the server. In particular, the security of TPS was greatly enhanced by limiting the access of documents including the personal information with regard to the client in an abnormal state through the TPM-based platform verification mechanism of the client system. In addition, we proposed and implemented a VTF (Virtual Trusted File) interface to provide users with the almost identical user interface as general document access even though documents containing personal information are encrypted and stored on the remote server. Consequently, the TPS automates the compliance of the personal information protection acts without additional users' interventions.

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area (산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가)

  • Yoon, Seongsim;Son, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

The Automation Model of Ransomware Analysis and Detection Pattern (랜섬웨어 분석 및 탐지패턴 자동화 모델에 관한 연구)

  • Lee, Hoo-Ki;Seong, Jong-Hyuk;Kim, Yu-Cheon;Kim, Jong-Bae;Gim, Gwang-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1581-1588
    • /
    • 2017
  • Recently, circulating ransomware is becoming intelligent and sophisticated through a spreading new viruses and variants, targeted spreading using social engineering attack, malvertising that circulate a large quantity of ransomware by hacking advertising server, or RaaS(Ransomware-as-a- Service), from the existing attack way that encrypt the files and demand money. In particular, it makes it difficult to track down attackers by bypassing security solutions, disabling parameter checking via file encryption, and attacking target-based ransomware with APT(Advanced Persistent Threat) attacks. For remove the threat of ransomware, various detection techniques are developed, but, it is very hard to respond to new and varietal ransomware. Accordingly, in this paper, find out a making Signature-based Detection Patterns and problems, and present a pattern automation model of ransomware detecting for responding to ransomware more actively. This study is expected to be applicable to various forms in enterprise or public security control center.

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.