• Title/Summary/Keyword: 자동탐지

Search Result 621, Processing Time 0.025 seconds

Misclassified Area Detection Algorithm for Aerial LiDAR Digital Terrain Data (항공 라이다 수치지면자료의 오분류 영역 탐지 알고리즘)

  • Kim, Min-Chul;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In;Park, Jun-Ku
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, aerial laser scanning technology has received full attention in constructing DEM(Digital Elevation Model). It is well known that the quality of DEM is mostly influenced by the accuracy of DTD(Digital Terrain Data) extracted from LiDAR(Light Detection And Ranging) raw data. However, there are always misclassified data in the DTD generated by automatic filtering process due to the limitation of automatic filtering algorithm and intrinsic property of LiDAR raw data. In order to eliminate the misclassified data, a manual filtering process is performed right after automatic filtering process. In this study, an algorithm that detects automatically possible misclassified data included in the DTD from automatic filtering process is proposed, which will reduce the load of manual filtering process. The algorithm runs on 2D grid data structure and makes use of several parameters such as 'Slope Angle', 'Slope DeltaH' and 'NNMaxDH(Nearest Neighbor Max Delta Height)'. The experimental results show that the proposed algorithm quite well detected the misclassified data regardless of the terrain type and LiDAR point density.

Automated Method for Detecting OOB Vulnerability of Heap Memory Using Dynamic Symbolic Execution (동적 기호 실행을 이용한 힙 메모리 OOB 취약점 자동 탐지 방법)

  • Kang, Sangyong;Park, Sunghyun;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.919-928
    • /
    • 2018
  • Out-Of-Bounds (OOB) is one of the most powerful vulnerabilities in heap memory. The OOB vulnerability allows an attacker to exploit unauthorized access to confidential information by tricking the length of the array and reading or writing memory of that length. In this paper, we propose a method to automatically detect OOB vulnerabilities in heap memory using dynamic symbol execution and shadow memory table. First, a shadow memory table is constructed by hooking heap memory allocation and release function. Then, when a memory access occurs, it is judged whether OOB can occur by referencing the shadow memory, and a test case for causing a crash is automatically generated if there is a possibility of occurrence. Using the proposed method, if a weak block search is successful, it is possible to generate a test case that induces an OOB. In addition, unlike traditional dynamic symbol execution, exploitation of vulnerabilities is possible without setting clear target points.

Development of Post-Processing Software for Flow Measurement Results Analysis using RQ-30 (RQ-30을 활용한 유량 측정 결과 분석을 위한 후처리 소프트웨어 개발)

  • Geunsoo Son;JungHwan Chun;Seongcheol Kang;Youngbeen Kwon;Youngsin Roh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.420-420
    • /
    • 2023
  • 하천의 유량 자료는 하천 관리에 필수적인 요소로, 지속적인 유량측정을 위해 국가 유량 측정망을 구성하여 주요 지점을 대상으로 유량 측정을 수행하고 있다. 측정된 유량자료는 일반적으로 수위-유량 관계곡선식을 개발하여 제공되고 있으며, 홍수파와 배수 영향 등으로 인해 수위-유량 관계곡선식에서 발생하는 산포로 인한 신뢰도에 문제가 우려되는 경우에는 실시간의 정확한 유량자료를 제공하기 위해 H-ADCP를 설치하여 지표유속법 기반의 실시간 유량 자료 생산하여 제공하고 있다. 그러나 H-ADCP를 이용한 유량 측정 방법은 장비의 한계로 인해 상대적으로 규모가 작고 수심이 얕은 하천에 적용하기 어려운 문제가 있다. 따라서, 최근에는 자동유량관측소 지점 확대를 위해 비접촉식 유속계를 활용한 자동유량관측소 운영이 점차 고려되고 있다. 이에 따라 비접촉식유속계를 이용한 유량 측정 결과의 검증 및 유지 관리를 위한 소프트웨어가 필요하다. 이에 본 연구에서는 비접촉식유속계 중 전자파를 이용하여 수표면의 표면유속을 측정할 수 있는 장비인 RQ-30의 측정결과를 분석하기 위해 Microsoft Visual Studio(C#) 사용하여 측정결과의 검토 및 자료 관리를 위한 후처리 소프트웨어를 개발하였다. 개발한 소프트웨어는 측정 원시자료를 읽고, 도시하여 측정 결과를 확인할 수 있으며, 머신러닝 기반의 알고리즘을 적용하여 수위 및 유속 시계열 자료에서 발생하는 이상치를 탐색할 수 있도록 개발하였다. 그리고 탐지된 이상치에 대한 보정을 위해 선형보간, LOESS, SuperSmoother를 사용하여 이상치를 보정하여 결과를 도출할 수 있도록 개발하였다. 추후 본 연구를 통해 개발된 프로그램을 활용하여 측정 자료의 유지 관리 효율성을 증대시킬 수 있을 것으로 기대되며, 지속적인 프로그램의 개선을 통해서 실무적으로 활용이 가능할 것으로 판단된다.

  • PDF

Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning (CNN을 이용한 딥러닝 기반 하수관 손상 탐지 분류 시스템)

  • Hassan, Syed Ibrahim;Dang, Lien-Minh;Im, Su-hyeon;Min, Kyung-bok;Nam, Jun-young;Moon, Hyeon-joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.451-457
    • /
    • 2018
  • We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec (Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발)

  • Song, ChanWoo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.211-227
    • /
    • 2022
  • Illegal gambling through online gambling sites has become a significant social problem. The development of Internet technology and the spread of smartphones have led to the proliferation of illegal gambling sites, so now illegal online gambling has become accessible to anyone. In order to mitigate its negative effect, the Korean government is trying to detect illegal gambling sites by using self-monitoring agents or reporting systems such as 'Nuricops.' However, it is difficult to detect all illegal sites due to limitations such as a lack of staffing. Accordingly, several scholars have proposed intelligent illegal gambling site detection techniques. Xu et al. (2019) found that fake or illegal websites generally have unique features in the HTML tag structure. It implies that the HTML tag structure can be important for detecting illegal sites. However, prior studies to improve the model's performance by utilizing the HTML tag structure in the illegal site detection model are rare. Against this background, our study aimed to improve the model's performance by utilizing the HTML tag structure and proposes Tag2Vec, a modified version of Doc2Vec, as a methodology to vectorize the HTML tag structure properly. To validate the proposed model, we perform the empirical analysis using a data set consisting of the list of harmful sites from 'The Cheat' and normal sites through Google search. As a result, it was confirmed that the Tag2Vec-based detection model proposed in this study showed better classification accuracy, recall, and F1_Score than the URL-based detection model-a comparative model. The proposed model of this study is expected to be effectively utilized to improve the health of our society through intelligent technology.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

An automatic detection scheme of anti-debugging routines to the environment for analysis (분석 환경에 따른 안티 디버깅 루틴 자동 탐지 기법)

  • Park, Jin-Woo;Park, Yong-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Anti-debugging is one of the techniques implemented within the computer code to hinder attempts at reverse engineering so that attackers or analyzers will not be able to use debuggers to analyze the program. The technique has been applied to various programs and is still commonly used in order to prevent malware or malicious code attacks or to protect the programs from being analyzed. In this paper, we will suggest an automatic detection scheme for anti-debugging routines. With respect to the automatic detection, debuggers and a simulator were used by which trace information on the Application Program Interface(API) as well as executive instructions were extracted. Subsequently, the extracted instructions were examined and compared so as to detect points automatically where suspicious activity was captured as anti-debugging routines. Based on experiments to detect anti-debugging routines using such methods, 21 out of 25 anti-debugging techniques introduced in this paper appear to be able to detect anti-debugging routines properly. The technique in the paper is therefore not dependent upon a certain anti-debugging method. As such, the detection technique is expected to also be available for anti-debugging techniques that will be developed or discovered in the future.

Design and Evaluation of an Anomaly Detection Method based on Cross-Feature Analysis using Rough Sets for MANETs (모바일 애드 혹 망을 위한 러프 집합을 사용한 교차 특징 분석 기반 비정상 행위 탐지 방법의 설계 및 평가)

  • Bae, Ihn-Han;Lee, Hwa-Ju
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.27-35
    • /
    • 2008
  • With the proliferation of wireless devices, mobile ad-hoc networking (MANETS) has become a very exciting and important technology. However, MANET is more vulnerable than wired networking. Existing security mechanisms designed for wired networks have to be redesigned in this new environment. In this paper, we discuss the problem of anomaly detection in MANET. The focus of our research is on techniques for automatically constructing anomaly detection models that are capable of detecting new or unseen attacks. We propose a new anomaly detection method for MANETs. The proposed method performs cross-feature analysis on the basis of Rough sets to capture the inter-feature correlation patterns in normal traffic. The performance of the proposed method is evaluated through a simulation. The results show that the performance of the proposed method is superior to the performance of Huang method that uses cross-feature based on the probability of feature attribute value. Accordingly, we know that the proposed method effectively detects anomalies.

  • PDF

A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection (변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구)

  • Kim, Dae-Sung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • This study focuses on co-registration and band selection, which are one of the pre-processing steps to apply the change detection technique using hyperspectral images. We carried out automatic co-registration by using the SIFT algorithm which performance was already established in the computer vision fields, and selected the bands fur change detection by estimating the noise of image through the PIFs reflecting the radiometric consistency. The EM algorithm was also applied to select the band objectively. Hyperion images were used for the proposed techniques, and non-calibrated bands and striping noises contained in Hyperion image were removed. Throughout the results, we could develop the reliable co-registration procedure which coincided with accuracy within 0.2 pixels (RMSE) for change detection, and verified that band selection depending on the visual inspection could be objective by extracting the PIFs.