• Title/Summary/Keyword: 자동차 브라켓 부품

Search Result 6, Processing Time 0.02 seconds

Progressive Forming Process Design of an Automotive Bracket Part with Computer Simulation (전산해석을 이용한 자동차 브라켓 부품의 프로그래시브 성형 공정 설계)

  • Kim, K.P.;Lee, D.G.;Jang, K.C.;Kim, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • This paper concerns the progressive die design for an automotive bracket part aided by the computer simulation in order to eliminate the inferiority such as the crack. The computer simulation of the progressive forming process is utilized in order to investigate cause of the cracks. This paper proposes a new guideline for the die design which modifies intermediate shapes and adds intermediate forming stages in progressive forming process. The effectiveness of the proposed design is verified by the computer simulation. The simulation result shows that the modified die design for the progressive forming process can eliminate the crack and improve quality of the automotive bracket part.

  • PDF

Development of a Inspection System for Automotive Part (자동차 부품 누락 방지를 위한 자동 선별 시스템)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.756-760
    • /
    • 2017
  • Meeting the growing demand deadlines, reducing the production cost and upgrading the quality control measurements are the reasons why the automotive part manufacturers are venturing into automation. Attaining these objectives is impossible with human inspection for many reasons. Accordingly, the introduction of inspection system purposely for door hinge bracket inspection is presented in this study as an alternative for human inspection. This proposal is designed to meet the demands, features and specifications of door hinge bracket manufacturing companies in striving for increased throughput of better quality. To improve demerits of this manual operation, inspection system is introduced. As the inspection algorithm, template matching algorithm is applied to distinguish the articles of good quality and the poorly made articles. Through the verification test of the inspection process algorithm and the similarity metric matching algorithm, the detection accuracy was 98%, and it was applied to the production site to contribute to the improvement of the productivity due to the decrease of the defective product.

Development of the Low Insertion force Grommet for Vechicle (차량용 저삽입력 그로멧 개발)

  • Cho, Ju-Cheol;Kim, Young-Gil;Seo, Hyroyuki;Song, Woo-Seung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.628-631
    • /
    • 2009
  • 본 논문에서는 당사인 경신공업(주)와 스미토모전장(주)와의 기술제휴를 통한 신제품 개발 프로젝트를 통하여 진행 한 연구 내용이다. 현재 자동차의 주요 부품 중 하나인 Dash-Grommet는 실외에서 실내부로 직부되는 부분으로 방수성이 주요한 성능이다. 이에 따라 현재 방수성 향상을 위해 볼팅으로 씰링을 하는 구조로서 브라켓트를 적용하고 있으며, 볼팅 툴 사용에 따른 홀 위치가 센터로 이동함에 따라 와이어 하네스 성형성을 위해 프로텍터를 적용하고 있다. 이와 관련하여 작업자의 툴 사용에 따른 산업재해(근골격계)요인 및 원가 상승의 원인이 되고 있다. 이에 본 연구에서는 그로멧 씰링구조를 최적화하여 브라켓트를 삭제시키고, 인간 공학적 구조 검토를 통한 저삽입력 구조의 Dash-Grommet 개발에 그 목적을 두었다. 그로멧 3중 씰링 구조를 이용하여 주요 성능인 방수(침수/살수) 성능에 대한 문제를 해결하였으며, 내부 파이프 구조를 이용하여 와이어를 통한 수분 유입에 대한 수밀 대책이 마련 되도록 하였다. 또한, 돌기부 구조를 이용하여 차량 장착시 판넬 접촉면을 최소화 함으로써 실제차량 장착 작업시 저삽입력을 가능하게 하였으며, 이와 더불어 홈부 구조를 이용하여 차량 장착시 그로멧의 수축을 용이하게 함으로써 새로운 그로멧 삽입 메커니즘을 구현하여 기존 대비 40~50%의 저 삽입력 그로멧을 개발할 수 있었다.

  • PDF

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

A Convergent Study on the Structural Analysis of Stabilizer at Light and Large Sized Cars (경차와 대형차에서의 스테빌라이저들의 구조해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • In this study, the torsional rigidity and durability of the stabilizer models with the hollow axis of light and large sized cars were compared and investigated each other. Model 1 was applied with the moment more than three times as much as model 2, but the maximum deformation of model 1 was seen to be about 2.6 times larger than that of model 2. Commonly, models 1 and 2 are seen to get the most stress at the neck of stabilizer bar link. Also, the maximum stress of model 1 was about 2.9 times larger than that of model 2. Model 1 at large car showed more than 20 times more deformed energy than model 2 at small car. Overall, it could be examined that the deformation energy of the bracket part on the side where the moment fixing the stabilizer bar was applied was greater than that of the stabilizer. It is thought that the analysis results in this study can be helped at the design of its convergent research as a durable component of the stabilizer at a light or large sized car.