• Title/Summary/Keyword: 자동제어 실험

Search Result 485, Processing Time 0.036 seconds

Study on the cooling control algorithm of electronic devices for an electric vehicle: Part 1 Effectiveness analysis of general control logic (전기자동차용 전자장비 냉각 제어 알고리즘에 관한 연구: Part 1 일반 냉각 제어 로직 유효성 분석)

  • Seo, Jae-Hyeong;Kim, Dae-Wan;Chung, Tae-Young;Jung, Tae-Hee;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1850-1858
    • /
    • 2014
  • The object of this study is to develop an cooling control algorithm for electronics devices of the electric vehicle. In order to estimate the existing cooling control logic of the electronic devices for the small and medium sized electric vehicle, the experiments on the coolant temperature variation of the cooling system were conducted under 4 different seasons conditions. As a result, the existing cooling control logic were overcooled when it was compared with the reference temperature for a required cooling load. In addition, the newly developed optimum cooling control logic for improving the mileages of the tested electric vehicle with consideration of the ambient temperature, vehicle speed, and refrigerant temperature of the air conditioning on/off is necessary.

A Study on the Simulation-Based Electric Control Panel Distance Learning Model (시뮬레이션 기반의 전기 제어 패널 원격 교육 모델에 관한 연구)

  • Noe, Chan-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.31-36
    • /
    • 2020
  • Virtual simulation education, which is one of the methods of executing engineering education, is spreading. In general online education, only theoretical learning-centered lessons and practical training of simple small projects are conducted remotely, and it is necessary to disseminate various educational contents. Due to the spread of smart factories these days, most producers use automatic control to produce, inspect and package their products. The operation of automation equipment is controlled by using electricity, and electricity-related learning is operated in various departments. Due to the characteristics of electricity, it is difficult to learn online due to safety issues and high cost of practical equipment. In this paper, we provide a simulation-based electrical control panel distance learning model to improve the sense of accomplishment of education related to electrical training. Through the experiment of the proposed model, it was confirmed that the learning was more satisfied with the virtual simulation education than the online education using the existing equipment. It is expected that it can be used as a basic course for automation equipment education in the future.

Autonomous Formation Flight Tests of Multiple UAVs (다수 무인항공기의 자동 편대비행 시험)

  • Song, Yong-Kyu;Heo, Chang-Hwan;Lee, Sang-Jun;Kim, Jung-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.264-273
    • /
    • 2010
  • In this work, autonomous formation flight tests of multiple UAVs are experimentally studied. After a guidance and control system for a UAV is designed and tested, PID formation controller for follower UAV is tested using longitudinal and lateral distance feedback. It is shown that more stable and efficient formation guidance system is obtained by using position and attitude of the leader aircraft, which is exploited to calculate virtual waypoint for follower. In order to improve transient response during turn, part of roll command of the leader is added to the guidance command. Finally, autonomous formation flight test results of 3 UAVs are shown by using the best guidance algorithm suggested.

Development of Moving Objects Monitoring and Transforming Personal Robot System Based on Remote Controls (원격제어기반 이동체 감지 및 변형 퍼스널 로봇시스템 설계 및 구현)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.159-165
    • /
    • 2010
  • The moving object monitoring and transforming personal robot system based on remote controls is designed and implemented, and the performance of the system is analyzed in this paper. The major considering factors in the system design are such as 1) the control scheme design (button based and the remote control schemes); 2) the operation modes design (wheel driving mode/pedestrian mode/auto driving mode/observation mode); 3) the remote control function design; 4) the design of the monitoring function of the changes in neighbor environments; 5) the design of the detection of obstruction. From the experiments, it is assured that the developed personal robot can walk to the grounds that covered with doorsill or electric wires in indoors by control the leg articulations, and can escape from the obstruction using three infrared sensors in the 30cm*30cm obstruction styled space under the auto driving mode.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.

Android Based Ubiquitous Interface for Controlling Service Robots (서비스 로봇 제어를 위한 안드로이드 기반의 유비쿼터스 인터페이스)

  • Quan, Yongxun;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, an Android based ubiquitous interface for controlling service robots is presented. The robot server captures the images for the front view of the robot, makes a map of the environment and its position, produces a graphic image of its pose, and then transmits them to the Android client. The Android client displays them in the LCD panel and transfers control information obtained from touched buttons to the server. In the interface environment, we implement remote moving mode, autonomous moving mode, and remote operation mode for being used for versatile operability to the robot with limited screen of the smart phone. Experimental results show the implementation of the proposed interface in Android installed on Motoroi to control a service robot, and demonstrate its feasibility.

The Development of LED Lighting Controller based on the PAN (PAN 기반의 LED 조명 제어 장치 개발)

  • Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.145-152
    • /
    • 2016
  • The usage of LED(Light Emitting Diode) has been rapidly increased and energy efficient management of LED light system is regarded as an important technology to enhance the energy efficiency. In this paper, we design and implementation of LED lighting controller which can control the LED lighting by using the wire and wireless communication technology based on the LAN(Local Area Network) and PAN(Personal Area Network). The implemented system can reduce the cost of LED lighting installing and avoids complicated wiring problem. And it is possible to minimize power consumption through automatic or manual LED control that they wished. In experimental results, the implemented LED lighting controller was satisfactory for all of the desired functions.

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

On-board charger for electric vehicles by using the mode change of the diode rectifier (다이오드 정류기의 모드 변경을 이용한 전기자동차용 탑재형 충전기)

  • Kim, Kyoung-Dong;Gwon, Sun-Man;Yoo, Kwang-Min;Chae, Hyung-Jun;Lee, Jun-young
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.213-214
    • /
    • 2012
  • 이 논문은 새로운 형태의 EV, PHEV용 탑재형 충전기를 제안한다. 입출력단의 절연을 위한 공진 컨버터와 역률 개선과 충전 전력을 제어하기 위한 벅부스트 컨버터의 2단 구조로 구성하였다. 벅부스트는 전압 스트레스 감소를 위한 2단 병렬 구조로 되어있으며, 낮은 입력전압에서의 효율개선과 벅부스트의 전류스트레스 저감을 위하여 LLC 2차 정류기 단의 모드변경으로 새로운 voltage doubler형식을 구현하였다. 제어기의 단순화와 사이즈 축소를 위한 DCM제어로 구현하였으며 파워부에서는 충전기의 수명을 고려하여 필름 커패시터만으로 구성하였다. 제안한 컨버터의 성능은 실험을 통하여 검증한다.

  • PDF

Adaptive self-structuring fuzzy controller of wind energy conversion systems (풍력 발전 계통의 자기 구조화 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This paper proposes an online adaptive fuzzy controller for a wind energy conversion system (WECS) that is intrinsically highly nonlinear plant. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and off-line implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing fuzzy system in the controller design in this paper. The proposed adaptive fuzzy control scheme using self-structuring algorithm requires no system parameters to meet control objectives. Even the structure of the fuzzy system is automatically grows on-line, which distinguishes our proposed algorithm over the previously proposed fuzzy control schemes. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.