• 제목/요약/키워드: 자동요소분할

검색결과 78건 처리시간 0.036초

외부 군집 연관 기준 정보를 이용한 군집수 최적화 (A Study on Optimizing the Number of Clusters using External Cluster Relationship Criterion)

  • 이현진;지태창
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권3호
    • /
    • pp.339-345
    • /
    • 2011
  • 군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법이다. k-means는 간단하고 빠른 군집화 알고리즘 중의 하나이다. 군집의 수 k는 군집화를 수행하는데 매우 중요한 요소이며, k의 값에 의해 군집화 결과가 달라진다. 본 논문에서는 반복적인 k-means 수행과 군집의 품질을 평가하는 외부 군집 연관 기준 정보를 결합하여 최적의 군집수를 결정하는 방법을 제안한다. 실험 결과 기존의 방법들에 비하여 제안하는 방법이 군집수의 정확성 측면에서 우수한 성능을 보였다.

색상 서열 비교를 통한 영상의 유사도 분석 기법 (Method of Image Similarity Analysis Using Sequence Alignment of Colors)

  • 정인준;우균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.426-429
    • /
    • 2011
  • 영상처리를 이용한 영상간의 유사도 비교 기법은 영상의 검색 및 영상의 자동 인식 등을 위한 연구로 최근 각광받고 있다. 최근 영상 처리 기법은 화소의 질적 향상 및 처리시간 최적화, 효율적인 특정 요소의 추출 등 다양한 방법으로 시도되고 있다. 특히, 영상의 유사도 비교는 유사 영상 검색과 같은 경우에 많이 쓰인다. 영상의 유사도를 비교하기 위한 기법으로는 영상 데이터의 특징에 따라 대상 영역을 여러 영역으로 나누는 영역분할 기법과 군집화, 퍼지, 유전자 알고리즘 등이 있다. 본 논문에서는 영상을 HSV 색공간으로 변환한 후 색상 값에 대하여 전역 정렬 기법을 사용하는 유사도 측정 방법을 제시한다. 전역 정렬 기법은 유전자 서열 비교 기법 중 하나로서 두 유전체의 유사도를 측정하는데 사용된다. 유사도 측정 효율을 높이기 위해 색상 값을 8단계로 양자화하여 영상의 서열을 생성하였다. 실험결과 제시한 방법을 영상 회전이나 대칭, 글자 삽입 등의 간단한 연산에 크게 영향을 받지 않는 것으로 드러났다.

서장 우편물 자동처리를 위한 우편영상 인식 시스템 (Postal Envelope Image Recognition System for Postal Automation)

  • 김호연;임길택;김두식;남윤석
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.429-442
    • /
    • 2003
  • 본 논문에서는 우편물 자동처리론 위한 우편영상 인식 시스템을 소개한다. 우편영상 인식 시스템은 서장 우편물을 집배원이 배달하는 순서에 따라 자동으로 구분할 수 있도록 우편영상을 입력으로 받아 수신인 주소를 출력하는 인식 시스템을 말한다. 이 시스템은 수신인 주소영역 추출, 문자열 분리, 문자분할, 문자인식, 그리고 주소해석 모듈로 구성되어 있다. 주소영역 추출을 위해서는 우편물 주소 기입 위치에 대한 경험적 지식을 이용하였으며, 문자열 분리와 문자분한을 위해서는 연결요소 분석과 수직런 분석을 이용하였다. 문자인식에는 신경망 기반 인식기를 이용하였으며, 주소해석을 위해서는 동적 프로그래밍 기법을 적용하였다. 각 모듈은 독립적으로 구현되었기 때문에 인식 시스템의 성능 개선을 위한 모듈별 최적화가 용이하다는 장점이 있다. 실험에는 대전 유성우체국의 우편물 구분기를 이용하여 실제 우편물에서 수집한 인쇄 우편영상과 필기 우편영상을 이용하였으며, 비교적 우수한 인식 결과를 얻었다.

CT 영상에서의 간 영역 추출 및 간 종양 분석

  • Jang Do-Won;Lim Eun-Kyung;Kim Chang-Won;Kim Min-Hwan;Kim Kwang-Baek
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.183-192
    • /
    • 2006
  • 간세포암은 우리나라에서 전체 암사망자 중 17.2%로 3번째의 흔한 사망원인이며, 간암에 의한 사망률은 인구 10만 명당 약 21명에 이른다. 본 논문에서는 간 내부에서 발생하는 간세포암을 CT 영상에서 자동으로 추출하는 방법을 제안하여 간세포암의 보조진단으로서의 유용성에 대해 알아보고자 한다. 간 내부의 종양을 추출하기 위해 흉부의 윗부분에서 시작하여 2.5mm의 간격으로 약 45-50장 정도를 촬영한 CT 영상들을 대상으로 먼저 간 영역을 추출한다. 간 영역 추출은 먼저 관심이 없는 외부 영역을 갈비뼈를 중심으로 제거한 후 영상의 밝기 정보를 이용하여 각 기관의 영역을 분할 한다. 분할된 영역들은 위 아래로 인접한 영상에서의 분할 영역들과 밝기 값을 비교하여 적절하게 병합하는 3차원적 접근방법을 사용한다. 간 영역은 여러개의 영역들 중에서 간 영역의 구조 및 위치 등의 정보를 활용하여 추출한다. 추출된 간 영역에서 종양 판별과 추출을 위해 종양이 가지는 특징을 분석하여 종양을 추출한다. 전형적인 간세포암은 과혈관성 종양이므로 조영증강 CT 영상에서 주위보다 밝은 색으로 나타나며, 팽창 형성장을 보일 경우에는 구형으로 나타나는 특징이 있다. 이에, 주위 보다 밝은 색을 가지고 둥근형태를 가지는 영역을 종양의 후보영역으로 선정한 후, 그 영상의 위와 아래로 연결되는 영상에서도 같은 위치에서 같은 특징을 보이는 영역이 있으면 간 내부의 종양으로 판별하여 추출한다. 제안된 간 영역 및 간 종양 추출 방법의 정확성을 판별하기 위하여 CT 영상을 대상으로 실험하여 영상의학 전문의가 판단한 결과와 비교하였다. 간 영역 추출은 정확히 모두 추출되었으며, 간 종양 추출 및 판별은 전문의의 보조 진단도구로 활용할 수 있는 가능성이 매우 높다는 것을 확인할 수 있었다.emantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다. 도움을 받을 수 있게 되었다.을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자(

  • PDF

이종물질에 의해 복잡한 불규칙 무늬가 형성된 물체 표면의 영상 기반 셰이딩 기법 (Image based Shading Techniques for Surfaces with Irregular and Complex Textures Formed by Heterogeneous Materials)

  • 이주림;남양희
    • 한국콘텐츠학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 물체 표면의 재질을 실물에 가깝게 렌더링 하는 것은 그래픽 콘텐츠의 사실감을 위한 중요한 요소이다. 본 논문은 속성이 다른 여러 구성 물질에 의해 복잡한 무늬가 형성된 표면을 한 장의 스틸 사진만을 이용하여 셰이딩하는 기법을 제안한다. 기존 방법들은 이와 같은 이종물질에 의한 불규칙한 텍스처의 렌더링을 위해 많은 이미지를 필요로 하거나 특수 촬영 장비를 사용했으며, 수작업에 의해 물질별 표면 영역을 나누어 주어야 했다. 본 연구에서는 영상의 히스토그램 분포 특성에 따른 물질별 텍스처 영역 분할법의 자동 선택 방식을 제시하였고, 그 결과로 구분된 물질별 레이어에 대해 근사화(approximate)된 양방향 반사도 분포함수(BRDF) 값을 구함으로써 주어진 사진과 다른 조명 조건이나 시야(view)에 대해서도 대응되는 렌더링 및 셰이딩 결과를 생성할 수 있음을 보였다.

자율주행 차량의 안전성을 위한 도로의 장애물 추출에 대한 기초 연구 (A Basic Study of Obstacles Extraction on the Road for the Stability of Self-driving Vehicles)

  • 박창민
    • Journal of Platform Technology
    • /
    • 제9권2호
    • /
    • pp.46-54
    • /
    • 2021
  • 최근, 차량의 자율주행에 대한 기술이 개발되면서 안정성은 매우 흥미로운 요소로 관심이 증대되고 있다. 그리고 자율주행에 대하여 1980년대 중반부터 전세계의 많은 대학, 연구 센터, 자동차 회사, 그리고 다른 산업의 회사들에 의해 연구 및 개발되고 있다. 본 연구에서는 자율주행 차량의 안전성을 위한 도로의 위협적인 장애물을 자동 추출하는 방안에 대한 기초 연구를 제안한다. 자동차 도로 위에는 다양한 장애물들이 존재하지만, 본 연구에서는 위협적인 장애물은 도로의 중앙에 위치하며 비교적 큰 개체로 정의한다. 먼저, 입력 영상에 대하여 해상도를 달리하여 분할하고 분할된 영역들은 내부 영역과 외부 영역으로 분류한다. 외부 영역은 영상의 경계에 인접하고 내부 영역은 그렇지 않다. 또한, 저해상도 영상에 인접한 영역이 동일한 영역에 포함되면 각 영역은 인접 영역과 병합된다. 그리고 주요한 객체 영역과 주요한 배경 영역은 각각 내부 영역과 외부 영역에서 선택된다. 따라서, 주요한 객체 영역은 면적과 크기 정보를 활용하여 장애물을 대표하는 영역으로 추출된다. 실험을 통하여 제안된 방법이 자동차 자율주행 안전성을 높여 사고와 사상자를 줄일 수 있는 기초연구에 기여할 수 있을 것으로 기대한다.

복잡한 배경영상에서 효과적인 전처리 방법을 이용한 표적 중심 추적기 (Efficient Preprocessing Method for Binary Centroid Tracker in Cluttered Image Sequences)

  • 조재수
    • 한국항행학회논문지
    • /
    • 제10권1호
    • /
    • pp.48-56
    • /
    • 2006
  • 본 논문에서는 복잡한 배경영상에서 움직이는 물체를 자동으로 추적하는 표적중심 추적기의 효과적인 전처리 방법을 제안하였다. 이진 표적중심 추적기의 성능은 다음과 같은 요소가 추적성능을 좌우한다: (1) 효과적인 실시간 전처리 방법 (2) 복잡한 배경영상에서의 정확한 표적 추출방법 (3) 지능적인 표적창 크기 조절법. 본 논문에서 제안하는 표적중심 추적기는 배경과 움직이는 표적을 좀 더 쉽게 판별할 수 있도록 추적필터를 이용한 효과적인 실시간 전처리 방법에 의한 적응적인 표적분할방법을 사용한다. 효과적인 전처리 방법이란 추적필터에 의해 추정된 표적중심을 중심으로 입력영상에 다른 가중치를 줌으로써 표적과 배경을 더 쉽게 분리할 수 있다. 제안한 방법은 합성영상 및 실제 적외선 영상을 이용한 다양한 추적실험을 통하여 그 효용성 및 성능을 검증하였다.

  • PDF

<한국어 립씽크를 위한 3D 디자인 시스템 연구> ()

  • 신동선;정진오
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 2부
    • /
    • pp.362-369
    • /
    • 2006
  • 3 차원 그래픽스에 적용하는 한국어 립씽크 합성 체계를 연구하여, 말소리에 대응하는 자연스러운 립씽크를 자동적으로 생성하도록 하는 디자인 시스템을 연구 개발하였다. 페이셜애니메이션은 크게 나누어 감정 표현, 즉 표정의 애니메이션과 대화 시 입술 모양의 변화를 중심으로 하는 대화 애니메이션 부분으로 구분할 수 있다. 표정 애니메이션의 경우 약간의 문화적 차이를 제외한다면 거의 세계 공통의 보편적인 요소들로 이루어지는 반면 대화 애니메이션의 경우는 언어에 따른 차이를 고려해야 한다. 이와 같은 문제로 인해 영어권 및 일본어 권에서 제안되는 음성에 따른 립싱크 합성방법을 한국어에 그대로 적용하면 청각 정보와 시각 정보의 부조화로 인해 지각의 왜곡을 일으킬 수 있다. 본 연구에서는 이와 같은 문제점을 해결하기 위해 표기된 텍스트를 한국어 발음열로 변환, HMM 알고리듬을 이용한 입력 음성의 시분할, 한국어 음소에 따른 얼굴특징점의 3 차원 움직임을 정의하는 과정을 거쳐 텍스트와 음성를 통해 3 차원 대화 애니메이션을 생성하는 한국어 립싱크합성 시스템을 개발 실제 캐릭터 디자인과정에 적용하도록 하였다. 또한 본 연구는 즉시 적용이 가능한 3 차원 캐릭터 애니메이션뿐만 아니라 아바타를 활용한 동적 인터페이스의 요소기술로서 사용될 수 있는 선행연구이기도 하다. 즉 3 차원 그래픽스 기술을 활용하는 영상디자인 분야와 HCI 에 적용할 수 있는 양면적 특성을 지니고 있다. 휴먼 커뮤니케이션은 언어적 대화 커뮤니케이션과 시각적 표정 커뮤니케이션으로 이루어진다. 즉 페이셜애니메이션의 적용은 보다 인간적인 휴먼 커뮤니케이션의 양상을 지니고 있다. 결국 인간적인 상호작용성이 강조되고, 보다 편한 인간적 대화 방식의 휴먼 인터페이스로 그 미래적 양상이 변화할 것으로 예측되는 아바타를 활용한 인터페이스 디자인과 가상현실 분야에 보다 폭넓게 활용될 수 있다.

  • PDF

적응적 p-Version 유한요소법에서 정규 크리깅에 의한 응력복구기법 (Stress Recovery Technique by Ordinary Kriging Interpolation in p-Adaptive Finite Element Method)

  • 우광성;조준형;이동진
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.677-687
    • /
    • 2006
  • 크리깅 보간법은 지구통계학 분야에 주로 사용되는 보간법의 하나이다. 이 방법은 실험적 베리오그램과 이론적 베리오그램의 작성과 크리깅 보간법의 정식화에 관한 연구를 포함하고 있다. 종래의 응력복구를 위한 최소제곱법과 대조적으로, 가우스적분점에서의 응력데이타로부터 준정해를 얻기 위해 가중 최소제곱법에 기초를 둔다. 즉, 동일한 가중치를 사용하는 종래의 방식들과는 달리 가우스적분점에서의 응력값의 보간을 위하여 베리오그램 모델링을 통한 가중치가 결정된다. 한편, 분할된 요소망에 Zienkiewicz와 Zhu에 의해 제안된 SPR기법에 기초를 둔 사후오차평가를 통해 p-차수를 균등 또는 선택적으로 증가시키는 자동체눈 방식이 도입되었다. 이 방법의 정당성을 보기위해 인장력을 받는 개구부를 갖는 평판문제를 해석하였다. 또한, 기존의 최소제곱법과의 비교를 통한 크리깅보간법의 정당성을 보여 주었다.

형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출 (Automatic Text Extraction from News Video using Morphology and Text Shape)

  • 장인영;고병철;김길천;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.479-488
    • /
    • 2002
  • 최근 들어 인터넷 사용의 증가와 더불어 디지털 비디오의 수요 또한 급격히 증가하고 있는 추세이다. 따라서 디지털 비디오 데이타베이스의 인덱싱을 위한 자동화된 도구가 필요하게 되었다. 디지털비디오 영상에 인위적으로 삽입되어진 문자와 배경에 자연적으로 포함되어진 배경문자 등의 문자 정보는 이러한 비디오 인덱싱을 위한 중요한 단서가 되어질 수 있다. 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 제안된 알고리즘은 다음과 같이 세 단계로 구성된다. 첫 번째 전처리 단계에서는 입력된 컬러 영상을 명도 영상으로 변환하고, 히스토그램 스트레칭을 적용하여 영상의 수준을 향상시킨다. 이 영상에 적응적 임계값 추출에 의한 분할 방법을 수정 적용하여 영상을 분할한다. 두 번째 단계에서는 적응적 이진화가 적용된 결과 영상에 모폴로지 연산을 적절하게 사용하여, 우선 문자 영역은 아니면서 문자로 판단되기 쉬운 양의 오류(false-positive) 요소들이 강조되어 남아있는 영상을 만든다. 또한, 변형된 이진화 결과 영상에 모폴로지 연산과 본 논문에서 제안한 기하학적 보정(Geo-corrertion) 필터링 방법을 적용하여 문자와 문자로 판단되기 쉬운 요소들이 모두 강조되어 남아있는 영상을 만든다. 이 두 영상의 차를 구함으로서 찾고자 하는 문자 요소들이 주로 남고, 문자가 아닌 문자처럼 보이는 오류 요소들은 대부분 제거된 결과 영상을 만든다. 문자로 판단되는 양의 오류 영역들을 남기는데 사용된 모폴로지 연산은 3$\times$3 크기의 구조 요소를 갖는 열림과 (열림닫힘+닫힘열림)/2 이며, 문자 및 문자와 유사한 요소들을 남기는데 사용된 연산은 (열림닫힘+닫힘열림)/2와 기하학적 보정이다. 세 번째 검증 단계에서는 전체 영상 화소수 대비 각 후보 문자 영역의 화소수 비율, 각 후보 문자 영역의 전체 화소수 대비 외곽선의 화소수 비율, 각 외곽 사각형의 폭 대 높이간의 비율 등을 고려하여 비문자로 판단되는 요소들을 제거한다. 임의의 300개의 국내 뉴스 영상을 대상으로 실험한 결과 93.6%의 문자 추출률을 얻을 수 있었다. 또한, 본 논문에서 제안한 방법으로 국외 뉴스, 영화 비디오 등의 영상에서도 좋은 추출을 보임을 확인할 수 있었다.