• Title/Summary/Keyword: 자동보정 방법

Search Result 307, Processing Time 0.02 seconds

Simultaneous Estimation of State of Charge and Capacity using Extended Kalman Filter in Battery Systems (확장칼만필터를 활용한 배터리 시스템에서의 State of Charge와 용량 동시 추정)

  • Mun, Yejin;Kim, Namhoon;Ryu, Jihoon;Lee, Kyungmin;Lee, Jonghyeok;Cho, Wonhee;Kim, Yeonsoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.363-370
    • /
    • 2022
  • In this paper, an estimation algorithm for state of charge (SOC) was applied using an equivalent circuit model (ECM) and an Extended Kalman Filter (EKF) to improve the estimation accuracy of the battery system states. In particular, an observer was designed to estimate SOC along with the aged capacity. In the case of the fresh battery, when SOC was estimated by Kalman Filter (KF), the mean absolute percentage error (MAPE) was 0.27% which was smaller than MAPE of 1.43% when the SOC was calculated by the model without the observer. In the driving mode of the vehicle, the general KF or EKF algorithm cannot be used to estimate both SOC and capacity. Considering that the battery aging does not occur in a short period of time, a strategy of periodically estimating the battery capacity during charging was proposed. In the charging mode, since the current is fixed at some intervals, a strategy for estimating the capacity along with the SOC in this situation was suggested. When the current was fixed, MAPE of SOC estimation was 0.54%, and the MAPE of capacity estimation was 2.24%. Since the current is fixed when charging, it is feasible to estimate the battery capacity and SOC simultaneously using the general EKF. This method can be used to periodically perform battery capacity correction when charging the battery. When driving, the SOC can be estimated using EKF with the corrected capacity.

Suitability of Measuring a Kidney Depth with Assessment of Glomerular Filtration Rateusing 99mTc-DTPA in the Ectopic Kidney and Pediatric Patients (99mTc-DTPA를 이용한 사구체여과율 검사에서 이소성 신장과 소아 환자의 신장 깊이 측정방법의 적절성)

  • Choi, Jae Min;Lee, Young Hee;Shim, Dong Oh
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2014
  • A glomerular filtration rate (GFR) study is a test that uses radioactive materials or tracers (radiopharmaceuticals) and a computer to see how well the kidneys are working. Asan Medical Center analyzed and compared data between kidney depth, acquired from kidney donors' CT image and acquired from Gates method's GFR value that are calculated by Tonnesen equation. This study was able to confirm that kidney depth measured from CT image was higher than the Gates Method's GFR value, which was calculated by Tonnessen equation; the direct relationship among pathologic results is confirmed. Particularly, kidney donor whose kidney was at the pelvic area had direct relationship with other clinical results. During the GFR test, it is necessary to confirm the location of kidney has no change with reference of CT image. If kidney depth is manually corrected using CT image when we measures GFR of deformed or horse-shoe kidney, it would be possible to acquire the compatible value which is equivalent to clinical result. There would be a possible issue of appropriateness that whether the applied GFR using CT image's kidney depth has clinical validity. In case of a pediatric patient, the GFR derived from Tonnesen was quiet underestimated while manual method and Gordon stay in normal range. Which results may be correct among them? There have been many reports about kidney depth, to be an accurate index of GFR in children. As one of the study performers, we should contemplate what the best option for pediatric patients would be.

  • PDF

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.

Study on the Usefulness of Using Anterior and Posterior Views for Calculation of Total Relative Uptake Ratio in 99mTc-DMSA Renal Scan (99mTc-DMSA 검사에서 상대 신섭취율 산출 시 양면상 촬영의 유용성에 대한 고찰)

  • Kim, Joo-Yeon;Lee, Han-Wool;Kwon, O-Jun;Kim, Jung-Yul;Park, Min-Soo;Cho, Seok-Won;Kang, Chun-Goo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose $^{99m}Tc-DMSA$ renal scintigraphy serves as location, size and shape of kidney, so it has been used for diagnosis and passage observation after the operation or treatment. There are 3 methods of calculating the relative renal uptake ratio such as geometric mean of the counts from the anterior and posterior views, arithmetical mean from the only posterior view and posterior view which applied the renal depths. In this study, we seek to correlation between the change of total relative uptake ratio according to different inspection methods of obtaining the renal count rate. Materials and Methods The phantom experiments proceeded 5 times depending on each renal depth with the kidney phantom and tissue equivalent materials. In the clinical research, we investigated 36 adult patients who had visited our hospital from february to october, 2014 and received $^{99m}Tc-DMSA$ renal scan. The equipment was used as a gamma camera named INFINIA (General Electric Healthcare, milwaukee, USA) and we drew the region of interests through semiautomatic method by using Xeleris Ver. 2.1220 of GE. In addition, we obtained the lateral view of kidney to measure the renal depth of each patient. Then the results were compared with 3 methods of calculating relative renal uptake ratio. Results The phantom studies show when the difference between the left ant right kidney depth were less than 1 cm, there were no statistically significant difference among values calculated through anterior and posterior views and only posterior view (P>0.05), while the excess of 1cm, the results showed a statistically significant change in the value (P<0.05). In case of clinical research, the correlation between total relative uptake ratio by obtaining both sides of image and posterior view applied the kidney depth (r=0.999) was higher than by obtaining only posterior view and applying the kidney depth to one side image (r=0.988). Conclusion This study has found that, the difference of calculating total relative uptake ratio compared with obtaining anterior and posterior views and only posterior view. In order to reduce the error, we recommend the method of obtaining anterior and posterior views and is considered to be useful, particularly the patients have similar uptake ratio of left and right kidney and difficulties of measurements of kidney depth.

  • PDF

Simplistic QA for an Enhanced Dynamic Wedge using the Reversed Wedge Pair Method (역방향 조사방식을 통한 동적쐐기의 품질관리)

  • Lee Jeong Woo;Hong Semie;Suh Tae Suk
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • A simplistic quality assurance (QA) method was designed for a Linac built-in enhanced dynamic wedge (EDW), which can be utilized to make wedged beam distributions. For the purpose of implementing the EDW symmetry QA, a film dosimetry system, low speedy dosimetry film, film densitometer and 3D RTP system were used, and the films irradiated by means of a 60$^{\circ}$ Reversed wedge pair (REWP) method. The profiles were then analyzed in terms of their symmetries, including partial treatment, which is the case of stopping it abruptly during EDW irradiation, and the measured and calculated values compared using the Cad Plan Golden Segmented Treatment Table (Golden STT). The result of this experiment was in good agreement, within 1 %, of the 'reversed wedge pair counterbalance effect'. For the QA of the effective wedge factor (EWF), the authors measured EWFs in relation to the 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, 25$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$ EDW, which were compared with the calculated values using the correction factor derived from the Golden STT and the log files produced automatically during the process of EDW irradiation. By means of this method it was capable of check up the safety of effective wedge factor without any other dosimetry system. The EDW QA was able to be completed within 1 hour from irradiation to analysis as a consequence of the simplified QA procedure, with maximized effectiveness. Unlike the metal wedge system, the EDW system was heavily dependent on the dose rates and jaw movements; therefore, its features could potentially cause inaccuracy. The frequent simplistic QA for the EDW is essential, and could secure against the flaw of dynamic treatment that uses the EDW.

  • PDF

The Evaluation of Reliability for the Combined Refractive Power of Overlapping Trial Lenses (중첩된 시험렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.263-276
    • /
    • 2015
  • Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.

Usefulness of Customized Cervical Spine Immobilizer in Head & Neck Image-Guided Radiation Therapy with Tomotherapy® (토모테라피를 이용한 두경부암 영상유도 방사선 치료 시 개인별 경추고정용구의 유용성 평가)

  • Jin, Sung Eun;Chang, Se Wuk;Choi, Jung Hoan;Kim, Min Joo;Ahn, Seung Kwon;Lee, Sang Kyu;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.65-71
    • /
    • 2018
  • Purpose : Standardized pillow may not support patient's individual cervical spine thoroughly when head and neck radiation therapy with $Tomotherapy^{(R)}$. Therefore, the purpose of this study was to make a comparative analysis for the difference of using standardized pillow only and using customized cervical spine immobilizer with standardized pillow. Materials and Methos : The head and neck cancer patients who are treated image-guided radiation therapy(IGRT) with $Tomotherapy^{(R)}$ were divided into two groups, 20 patients using standardized pillow only, and 20 patients using customized cervical spine immobilizer with standardized pillow. We achieved 20 mega-voltage computed tomography(MVCT) image per patient, compared curvature of the cervical spine in MVCT with curvature of the cervical spine in CT-simulation. Results : Results of comparative analysis were curvature consistency 95.9 %, maximum error of distance 41.9 mm, average distance error per fractionation 19.4 mm, average standard deviation 1.34 mm in case of using standardized pillow only, curvature consistency 98.9 %, maximum error of distance 12.9 mm, average distance error per fractionation 5.8 mm, average standard deviation 0.59 mm in case of using customized cervical spine immobilizer with standardized pillow. Conclusion : Using customized cervical spine immobilizer shows higher reproducibility and low distance error, therefore customized cervical spine immobilizer could be useful for head and neck cancer patients who need radiation therapy.

  • PDF