• Title/Summary/Keyword: 자기 방사임피던스

Search Result 20, Processing Time 0.028 seconds

방사 임피던스 영향을 고려한 최적 빔 설계 통합 S/W 구현

  • 편용국;임준석
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.1069-1074
    • /
    • 2003
  • For beam forming method is equaled detection performance of water weapons system, the best beam plan is very important in it. This study showss that the plan software considered radiation, or mutual radiation impedance. This software calculated effect of mutual radiation impedance by sensor array form, it is planed that one of the press paramater in the beam plan.

  • PDF

Design of A Linear Polarized-Slotted Waveguide Antenna Using Longitudinal Slots on the Broad wall of a Rectangular Waveguide (구형도파관의 넓은면에 축방향 슬롯을 배열한 직선편파 특성의 도파관 안테나 설계)

  • Shin, P. S.;Ko, Y. H.;Ko, K. T.;Paek, L. J.;Lee, Y. H.;Tae, J. H.
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.153-156
    • /
    • 1998
  • 구형도파관의 넓은 면에 축방향 슬롯을 파고 또 각각의 슬롯을 축방향으로 배열하였 때의 원거리 방사패턴을 구하는 과정을 보였으며 측정된 결과와 계산결과를 비교하였다. 방사전자계는 슬롯의 표면에 유기되는 등가의 자기전류로부터 계산할 수 있으며 임의의 개수를 가지는 배열안테나의 경우에는 각각의 슬롯이 자기 어드미턴스와 상호결합에 의한 영향을 받기 때문에 원하는 방사패턴을 얻기 위해서는 상호 어드미턴스를 고려하여 슬롯의 길이와 오프셋을 고려하여야 한다. 슬롯에서의 전계분포 해석은 모멘트법(method of moment)을 사용하여 해석하였다. 본 연구에서는 직선편파특성을 가지는 슬롯 배열 안테나의 설계를 위하여 슬롯의 자기 및 상호 어드미턴스를 구하고, 반복적인 수치해석 과정을 통하여 입력임피던스의 최적화 방법에 대하여 논하였다.

  • PDF

Optimal Beam Design of Underwater Acoustic Planar Array Transducer Considering Radiation Impedance (방사 임피던스를 고려한 평면 배열 수중 음향 트랜스듀서의 최적 빔 설계)

  • Joh, Chee-Young;Seo, Hee-Seon;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 1996
  • In this paper, a nonlinear optimal design technique is presented to find an optimal beam pattern. With this technique, the beam width is minimized with respect to a given maximum allowable side-lobe level considering the self- and mutual radiation impedances of vibrators. The proposed method is applied to design a planar array consisting 37 vibrators which are symmetric in X, Y and $45^{circ}$ axes. The results show that significantly low side-lobe level maintaining a main beam width can be obtained using this method.

  • PDF

An Analysis on the Fluid-Loading Coefficients of Cylindrical Shell Structure With Arbitrary end Conditions (임의 경계조건을 가진 원통셸 구조의 유체영향계수 해석)

  • 전재진;정우진
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 1996
  • The general approach using sine series expansions was represented to evaluate the radiation loading from a vibrating surface on a simply supported cylinder. In this paper, the fluid-loading coefficients (radiation impedance) for a submerged finite cylindrical shell with an arbitrary end condition are defined and evaluated. The vibrations of cylindrical shell are expressed by using cosine series expansions to analyze the radiation impedance for a finite cylindrical shell. It is possible to represent the displacements at both ends of cylindrical shell in comparison with sine series. The direct and cross modal components of fluid-loading coefficients are shown and the validity of cosine series expansions are verified from the results of numerical computations. This approach and results are directly applicable in the analysis of sound radiation from subemerged finite cylindrical shell with arbitrary end conditions.

  • PDF

Artificial Magnetic Conductor(AMC) Polarizer Backed Circular-Polarized(CP) Antenna (인공 자기 도체 편파 변환기를 이용한 원형 편파 안테나)

  • Chang, Ki-Hun;Ahn, Ji-Hwan;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.459-467
    • /
    • 2010
  • A new type of circularly polarized(CP) antenna that is characterized by having both low-profile and greater axial-ratio bandwidth(ARBW) beyond existing antennas is introduced through analysis of artificial magnetic conductor(AMC) polarizer, and experimentally demonstrated. Although it is made use of a linear-polarized dipole antenna with close proximity to ground plane, it is backed by AMC polarizer so as to efficiently radiate with circularly changed polarization whose ARBW is determined by the texture geometry, whereas existing antennas exhibit CP surface-current on radiators, which limit ARBW. The mechanism of the polarization conversion is theoretically analyzed for ARBW, and the experimental properties including the impedance matching, CP radiation pattern, axial-ratio pattern, ARBW, and two-port isolation are discussed.

The Radiation Characteristics Improvement and Thickness Reduction of Base Station Antenna with Artificial Magnetic Conductor (인공 자기 도체를 이용한 기지국 안테나의 방사 특성 개선 및 두께 감소)

  • Son, Cheol-Hong;Ahn, Ji-Hwan;Chang, Ki-Hun;Yoon, Ji-Hwan;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1233-1242
    • /
    • 2009
  • In this paper, a Base Station Antenna(BSA) utilizing Artificial Magnetic Conductor(AMC) as reflector instead of common conductive plate to improve radiation characteristics and achieve low-profile is proposed. In the case of the conventional BSA on conductive surface which acts as a reflector, a secondary radiation is caused at the corner of the conductive surface, and it increases the back-lobe of the antenna, resulting in deteriorating the radiation characteristic of the conventional BSA. However, using the AMC, the back-lobe of the BSA can be largely reduced by the surface wave suppression. And the Side-Lobe Level(SLL) is also improved, resulting in preventing the service area overlapped. Furthermore, due to the $0^{\circ}$ reflection phase on AMC, the profile of the BSA can be also reduced.

Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics (위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선)

  • Cho, Young-Jun;Kim, Choul-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • As the design complexity and performances are increased in satellite electronic board, noise related problems are also increased. To minimize the noise issues, various design improvements are performed by power integrity and signal integrity analysis in this research. Static power and dynamic power design are reviewed and improved by DC IR drop and power impedance analysis. Signal integrity design is reviewed and improved by time domain signal wave analysis and PCB(Printed Circuit Board) design modifications. And also power planes resonance modes are checked and mitigation measures are verified by simulation. Finally, it is checked that radiated noise is reduced after design improvements by EMC(Electro Magnetic Compatibility) RE(Radiated Emission) measurement results.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Embodiment of High Impedance Surface of Meta-Material Characteristic Using Symmetrical AMC Structure and Its SAR Analysis (대칭형 인공자기도체 구조를 이용한 메타물질 특성의 고임피던스 표면 구현 및 SAR 특성 분석)

  • Lee, Seungwoo;Lee, Moung-Hee;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.744-750
    • /
    • 2013
  • In this paper, we proposed new type of an artificial magnetic conductor(AMC) structure, which has a high impedance surface for realizing the meta-material characteristics. The designed AMC structure set a goal of 3.2GHz, and the reflector, which consists of periodically arrayed AMCs is fabricated and measured. The high impedance improves the reflection coefficient, decreases the system size and interference, and increases the antenna performance. The structure has embodied the high impedance by the thickness and relative permitivity of the dielectric substrate and the design configuration without the metallic via hole which connects the AMC to the GND. The bandwidth is 150% broader than the similar AMC structures. Also, the distance between the antenna and the AMC reflector is decreased by ${\lambda}/10$ as working as the metal(PEC) reflectors. The antenna radiation characteristics are 3dB increased at 10mm away from reflector by measurement. The proposed reflector could be inserted in the portable mobile devices, and the antenna's performance has improved by the reflector. The specific absorption rate is dramatically decreased over 94% because the back radiation of the antenna is shielded.