• Title/Summary/Keyword: 자기 기어

Search Result 33, Processing Time 0.046 seconds

Remote gas meter-reading system using magnetic sensor (자계 센서를 이용한 원격 가스 검침 시스템)

  • Koo, JaYl
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • This paper is related to remote meter-reading using magnetic sensor. Scan system which is developed recently has week point of temperature, humidity, dust, oscillation To solve these problems, this study used magnetic action to measure the consumption of gas. Gas consumption was detected by interaction of a permanent magnet and hall element. Permanent magnet was pasted on rolling change-gear in normal gas meter and hall sensor was pasted on the external wall of normal gas meter. This experiment proved high accuracy and wasn't influenced by temperature, humidity, oscillation and dust

Performance Evaluation of Driver Supportive System with Haptic Cue Gear-shifting Function Considering Vehicle Model (차량모델을 고려한 햅틱 큐 기어변속보조 시스템의 성능평가)

  • Han, Young-Min;Sung, Rockhoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a driver supportive device with haptic cue function which can transmit optimal gear shifting timing to a driver without requiring the driver's visual attention. Its performance is evaluated under vehicle model considering automotive engine, transmission and vehicle body. In order to achieve this goal, a torque feedback device is devised and manufactured by adopting the MR (magnetorheological) fluid and clutch mechanism. The manufactured MR clutch is then integrated with the accelerator pedal to construct the proposed haptic cue device. A virtual vehicle emulating a four-cylinder four-stroke engine, manual transmission system of a passenger vehicle and vehicle body is constructed and communicated with the manufactured haptic cue device. Control performances including torque tracking and fuel efficiency are experimentally evaluated via a simple feed-forward control algorithm.

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

Parameter Design of The Magnet Gear with A Closed Magnetic Path (자기 폐회로를 갖는 마그네트 기어의 변수 설계)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2015
  • A novel topology for the magnet gear is proposed in this study. Differently from the existing methods, both sides of magnet array in this topology are used, resulting in increasing the efficiency of the mechanism. The closed magnetic path between the magnetic elements decreases the leakage flux, so the interlinking magnetic flux through the air-gap is focused and intensified. This paper discusses the dominant parameters of the proposed magnet gear influencing the resulting transmission torque. The parameters are designed from the sensitivity analysis using the commercial FEM analysis tool. And, the test setup for verifying the performance of the system is described.

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.627-632
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological (MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

  • PDF

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Torque Analysis of Magnetic Spur Gear with Radial Magnetized Permanent Magnets based on Analytical Method (해석적 방법을 이용한 반경방향 영구자석을 갖는 자기 스퍼 기어의 토크특성해석)

  • Min, Kyoung-Chul;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.545-551
    • /
    • 2015
  • This paper deals with torque analysis of magnetic spur gear with radial magnetized permanent magnets based on analytical method. The analysis is implemented in three parts: First, on the basis of magnetic vector potential and a two-dimensional (2D) polar-coordinate system, the magnetic field solution due to permanent magnet of source gear are obtained. And by using derived magnetic field solutions, the analytical solutions for external magnetic field distribution which affects load gear are obtained. Second, by using coordinate conversion, external magnetic field which is on the primary coordinate system is converted to the secondary coordinate system. Finally, the load gear is reduced to equivalent current densities, and the torque is computed on these currents in the external field of the source magnet. These analytical results are validated by comparing with the 2-D finite element analysis (FEA).

A Generalized Procedure to Extract Higher Order Moments of Univariate Spatial Association Measures for Statistical Testing under the Normality Assumption (일변량 공간 연관성 측도의 통계적 검정을 위한 일반화된 고차 적률 추출 절차: 정규성 가정의 경우)

  • Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • The main objective of this paper is to formulate a generalized procedure to extract the first four moments of univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was derived for both global and local measures. When necessary matrices are appropriately defined for each of the measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis. Second, the normal approximation based on the first two moments for the global measures fumed out to be acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the large magnitude of skewness and kurtosis.

A study on the hard surfacing Characteristics of SM45C by using Diode laser (다이오드 레이저를 이용한 SM45C의 표면경화 특성에 관한 연구)

  • Lim, Byung-Chul;Lee, Hong-Sub;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1620-1625
    • /
    • 2015
  • In this study, a variety of industrial gears, shafts, chains, rollers, mold, etc. are widely used inautomotive steel carbon steel for machine structural SM45C typical material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of SM45C lacal area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Mechanism Design and Control Technique of Duct Cleaning Robot with Self-position Recognition (자기위치 인식 가능한 덕트 청소로봇의 메카니즘 설계 및 제어기법)

  • Jang, Woojin;Seo, Myungin;Ha, Junhwan;Park, Kyongtae;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.85-95
    • /
    • 2019
  • This work shows how to design a robot structure and to control to overcome obstacles while traveling through ducts of various diameters and shapes by three-legged robot. Circuits are centered in the body to connect the three wheel bodies that are driven around the center body with the 4-section slider link structure. Also, the springs are used to contract and expand the robot legs so that it can be caparable of various environments. Geared motor, spring, and belt were selected based on the static and dynamic calculation to be suitable to horizontal and vertical travels. The center body is equipped with a camera and the distance sensors, and a control algorithms are implemented so that it can be successfully performed in L-type and T-type ducts. Using UWB modules and trilateration algorithm, the location of the duct-cleaning robot inside the duct could be identified successfully.