• Title/Summary/Keyword: 자기회귀조건부 이분산성모형

Search Result 9, Processing Time 0.024 seconds

Analyzing financial time series data using the GARCH model (일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석)

  • Kim, Sahm;Kim, Jin-A
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.475-483
    • /
    • 2009
  • In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.

  • PDF

Clustering Korean Stock Return Data Based on GARCH Model (이분산 시계열모형을 이용한 국내주식자료의 군집분석)

  • Park, Man-Sik;Kim, Na-Young;Kim, Hee-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.925-937
    • /
    • 2008
  • In this study, we considered the clustering analysis for stock return traded in the stock market. Most of financial time-series data, for instance, stock price and exchange rate have conditional heterogeneous variability depending on time, and, hence, are not properly applied to the autoregressive moving-average(ARMA) model with assumption of constant variance. Moreover, the variability is font and center for stock investors as well as academic researchers. So, this paper focuses on the generalized autoregressive conditional heteroscedastic(GARCH) model which is known as a solution for capturing the conditional variance(or volatility). We define the metrics for similarity of unconditional volatility and for homogeneity of model structure, and, then, evaluate the performances of the metrics. In real application, we do clustering analysis in terms of volatility and structure with stock return of the 11 Korean companies measured for the latest three years.

Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models (벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정)

  • Lee, Myeongwoo;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • We consider the wild bootstrap Ljung-Box (LB) test for autocorrelation in residuals of fitted multivariate time series models. The asymptotic chi-square distribution under the IID assumption is traditionally used for the LB test; however, size distortion tends to occur in the usage of the LB test, due to the conditional heteroskedasticity of financial time series. In order to overcome such defects, we propose the wild bootstrap LB test for autocorrelation in residuals of fitted vector autoregressive and error correction models. The simulation study and real data analysis are conducted for finite sample performance.

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

Stochastic Volatility Model vs. GARCH Model : A Comparative Study (확률적 변동성 모형과 자기회귀이분산 모형의 비교분석)

  • 이용흔;김삼용;황선영
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.217-224
    • /
    • 2003
  • The volatility in the financial data is usually measured by conditional variance. Two main streams for gauging conditional variance are stochastic volatility (SV) model and autoregressive type approach (GARCH). This article is conducting comparative study between SV and GARCH through the Korean Stock Prices Index (KOSPI) data. It is seen that SV model is slightly better than GARCH(1,1) in analyzing KOSPI data.

Exploratory data analysis for Korean daily exchange rate data with recurrence plots (재현그림을 통한 우리나라 환율 자료에 대한 탐색적 자료분석)

  • Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1103-1112
    • /
    • 2013
  • Exploratory data analysis focuses mostly on data exploration instead of model fitting. We can use the recurrence plot as a graphical exploratory data analysis tool. With the recurrence plot, we can obtain the structural pattern of the time series and recognize the structural change points in time series at a glance.

A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets (딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측)

  • Lee, Woosik;Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.327-335
    • /
    • 2016
  • The People's Republic of China has vigorously been pursuing the internationalization of the Chinese Yuan or Renminbi after the financial crisis of 2008. In this view, an abrupt increase of use of the Chinese Yuan in the onshore and offshore markets are important milestones to be one of important currencies. One of the most frequently used methods to forecast volatility is GARCH model. Since a prediction error of the GARCH model has been reported quite high, a lot of efforts have been made to improve forecasting capability of the GARCH model. In this paper, we have proposed MLP-GARCH and a DL-GARCH by employing Artificial Neural Network to the GARCH. In an application to forecasting Chinese Yuan volatility, we have successfully shown their overall outperformance in forecasting over the GARCH.

Application of Volatility Models in Region-specific House Price Forecasting (예측력 비교를 통한 지역별 최적 변동성 모형 연구)

  • Jang, Yong Jin;Hong, Min Goo
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.41-50
    • /
    • 2017
  • Previous studies, especially that by Lee (2014), showed how time series volatility models can be applied to the house price series. As the regional housing market trends, however, have shown significant differences of late, analysis with national data may have limited practical implications. This study applied volatility models in analyzing and forecasting regional house prices. The estimation of the AR(1)-ARCH(1), AR(1)-GARCH(1,1), and AR(1)-EGARCH(1,1,1) models confirmed the ARCH and/or GARCH effects in the regional house price series. The RMSEs of out-of-sample forecasts were then compared to identify the best-fitting model for each region. The monthly rates of house price changes in the second half of 2017 were then presented as an example of how the results of this study can be applied in practice.