• Title/Summary/Keyword: 자기토커

Search Result 12, Processing Time 0.028 seconds

Reaction Wheel Momentum Dumping with Magnetic Torquer Failure (자기토커 고장시 반작용휠 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.371-378
    • /
    • 2019
  • High precision pointing satellite uses the reaction wheels for the attitude control and their momentum dumping is performed by the three magnetic torquers. In this paper, the effects of one magnetic torquer's failure on the momentum dumping will be reviewed. When the satellite on the high inclination angle orbit holds LVLH (Local Vertical Local Horizontal) attitude, pitch axis magnetic torquer failure causes the momentum dumping failure. But in case of other torquer's failure, momentum dumping is still possible with degraded dumping performance. When pitch axis magnetic torquer fails, momentum dumping is possible by changing the satellite attitude. This paper propose the satellite attitude change to make the momentum dumping possible when pitch axis magnetic torquer fails. In addition, if torquer arrangement is modified, momentum dumping is always possible regardless of any torquer's failure.

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

The Design Method of the Torquer in DTG (자이로스코프에서 토커의 설계 및 해석)

  • 김홍규;정현교;홍선기
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • The role of the torquer in dynamically tuned gyroscope (DTG) is to erect the slanted rotor straight. This IBper presents the design method of the torquer. The torquer must satisfy the desired maximum angular velocity condition. The performance of magnet-residual flux density, maximum energy product, and so on-is limited by the material characteristics. So we should design the torquer with the limited condition that magnet performance is given. If the mechanical size of DTG is deter-mined, the dimension of the torquer is calculated and the space of the torquer becomes constant. Therefore, if we determine the diameter of the torquer coil, the number of coil turns is calculated automatically. Using these dimensions, we can calculate the torque and the scale factor. The maximum angular velocity is computed if we know the maximum current density. The analysis of the torquer was carried out by the 3-dimensional finite element method. The proposed algorithm of the torquer design was valid in comparison with the experimental data obtained from fabricated DTG.

  • PDF

STUDY ON THE ATTITUDE CONTROL OF SPACECRAFT USING REACTION WHEELS (반작용휠을 이용한 위성체 자세제어 연구)

  • 두주영;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.245-250
    • /
    • 1998
  • Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  • PDF

Construction of Magnetic Torquer For Attitude Control of Satellite (인공위성 자세제어용 마그네틱 토커의 제작)

  • 가은미;손대락
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.134-135
    • /
    • 2002
  • 모든 인공 위성이 궤도 올라가서 정확한 업무를 수행하기 위해서는 정확한 위치 정보와 안정된 자세제어 시스템을 필요로 한다. 궤도에 올라간 후 안정된 자세를 잡기 위해서는 위성체의 덤블링 방지해야되므로 초기 자세제어가 매우 중요하다. 그리고, 안정된 제도에 도달하여 자세를 잡기 의해서는 정확한 자세 정보와 자세를 조절하는 장치가 필요하며, 이를 얻기 위해서 thruster, momentum wheel, 마그네틱 토커, 마그네토미터 등과 같은 장치들이 사용되어진다. (중략)

  • PDF

The 3-Axis Attitude Stabilization System Design of Picosat Hausat-1 (극소형 위성 HAUSAT-1의 3축 자세 안정화 시스템 설계)

  • Seo,Seung-Won;Jeong,Nam-Suk;Jang,Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.100-111
    • /
    • 2003
  • The HAUSAT-1(Hankuk Aviation University SATellite-1) will orbit at the altitude of 650km-800 km with 65 or 98 degree inclination angle. The effects of magnetic field and Earth gravity are more predominant than other space disturbances because the HAUSAT-1 will be positioned in LEO(Low Earth Orbit). The HAUSAT-1 design implements a magnetic control system and gravity-stable system which implement the solar panel deployment system. The simulation using MATLAB was performed to make sure the attitude stability of HAUSAT-1, which is based on the 8th order magnetic field model and non-linear equations of disturbances and the HAUSAT-1 attitude. The stability is investigated for two different HAUSAT-1 configurations and attitude which are affected by disturbances through simulation. The results for gravity-gradient stable and non gravity-gradient stable system are compared. Methodology of attitude stabilization was explored to develop an effective attitude control system for the HAUSAT-1 using magnetic torquers.

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite (6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석)

  • Rhee, Seung-Wu;Kim, Hong-Joong;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.200-209
    • /
    • 2013
  • In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.

Two Axis Attitude Control System Design of Momentum Biased Satellite (모멘텀 바이어스 인공위성의 2축 자세제어 시스템 설계)

  • Lee, Seung-U;Seo, Hyeon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • It is required to develop a highly reliable attitude & orbit control system of satellite that is less expensive as the technology of satellite design & integration is recently matured dramatically. To accomodate this kind of needs, the two axis attitude control method for wheel-based momentum-biased satellite system whose momentum bias vector points to a certain direction(sun direction), is developed using simple but reliable sensors and actuator: three axis magnetometer and coarse sun sensor are used as sensors, and magnetic torque bars are used as actuator. Classical PD type controller design methodologies are applied on a satellite system for the two axis control with the proper assumptions. Nonlinear simulation results are included to demonstrate the long term stability and the performance of closed-loop system design results.

Analysis of External Disturbance Torque on a LEO Satellite (저궤도 위성의 외란 토크 해석)

  • Yim, Jo-Ryeong;Kim, Yong-Bok;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • The external disturbance torque acting on a low earth orbit spacecraft was analyzed. For the Earth pointing attitude, the maximum torque to the spacecraft is about $8.3{\times}10^{-4}$ Nms and the momentum accumulated for an orbit is about 1.4 Nms and for the Sun pointing attitude, the maximum torque to the spacecraft is about $1.6{\times}10^{-3}$ Nms and the momentum is accumulated about 3.0 Nms in the spacecraft body reference frame. The analysis results confirm that the size of magnetic torquer selected previously for the satellite is sufficient to manage the accumulated momentum by considering the dumping capacity for an orbit.

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.