• Title/Summary/Keyword: 자기터널접합

Search Result 106, Processing Time 0.023 seconds

TMR 시료의 fabrication 전 후의 열처리 효과

  • Jun, K-I;Lee, J. H.;Shin, Kyung-Ho;Park, S. Y.;K. Rhie;J. R. Rhee;I. W. Jang;Lee, K. N.;Kim, C. S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.158-159
    • /
    • 2002
  • 스핀 밸브에서는 NiFe, CoFe, Cu등 주요 금속들이 면심입방체(111)로 배향이 용이하지만, 자기 터널 접합 소자에서는 $Al_2$O$_3$ 장벽층이 비정질로서 상부 강자성 전극이 충분히 (111) 배향을 할 수 없기 때문에 top bias 방식의 사용이 거의 불가능하며, bottom bias의 경우에도 교환 바이어스의 크기는 상대적으로 작다[1]. 이를 극복하기 위해 인공 초격자를 이용한 인공 반강자성층(synthetic antiferromagnet - SAF)을 이용하여 높은 교환 바이어스 효과를 구현하고자 하였다. (중략)

  • PDF

Tunneling Magnetoresistance of a Ramp Edge Junction with $SrTiO_3$ Barrier Layer ($SrTiO_3$ 장벽층을 이용한 경사형 모서리 접합의 터널링 자기저항 특성연구)

  • Lee, Sang-Suk;Kim, Young-Il;Hwang, Do-Guwn;Kim, Sun-Wook;Kungwon Rhie;Rhee, Jang-Roh
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.174-175
    • /
    • 2002
  • A ramp-type tunneling magnetoresistance (TMR) junction having structure NiO(60 nm)/pinned Co(10 nm)MiO(60 nm)/barrier SrTiO$_3$(2-10 nm)/free NiFe(10 nm) with the 15 degree slope was investigated. We obtained nonlinear I(V) characteristics for ramp-type tunneling junctions that have distinctive difference with and without applied magnetic field. In the barrier SrTiO$_3$ thickness of 4 nm, the TMR was about 52% at a bias voltage of 50 mV. (omitted)

  • PDF

Effect of Doubly Plasma Oxidation Time on TMR Devices (이중절연층 산화공정에서 플라즈마 산화시간에 따른 터널자기저항 효과)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • We fabricated MTJ devices that have doubly oxidized tunnel barrier using plasma oxidation method to from oxidized AlO$\sub$x/ tunnel barrier. Doubly oxidation I, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it with oxidation time of 10 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 50, 80 and 120 s., respectively. Doubly oxidation II, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it varying oxidation time for 30∼120 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 210 sec. Double oxidation process specimen showed MR ratio of above 27% in all experiment range. Singly oxidation process. 13 ${\AA}$-Al layer and oxidized up to 210 s, showed less MR ratio and more narrow process window than those of doubly oxidation. Cross-sectional TEM images would that doubly oxidized barrowers were thinner and denser than singly oxidized ones. XPS characterization confirmed that doubly oxidation of Fe with bottom insulating layer. As a result, doubly oxidation could have superior MR ratio in process extent during long oxidation time because of preventing oxidation of bottom magnetic layer than singly oxidation.

The Electromagnetic Properties in Uncoupled funnel-junction with Various Cr Seed Layer (비결합형 터널접합구조에서 Cr 하지층에 따른 전자기적 특성변화)

  • Park, J.W.;Jeon, D.M.;Yoon, S.Y.;Lee, J.Y.;Suh, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2003
  • Cross-geometrical Cr/Co/Al-Ox/Co/Ni-Fe tunnel junctions were fabricated by magnetron sputtering. To form an insulating layer, The Al layer was oxidized in an atmosphere of oxygen-argon mixture at low power after deposition. To enhance the coercivity of the bottom Co layer, The Cr seed layer was deposited on the glass and it led to increase in coercivity. The coercivity increase is due to the increase of roughness through the Cr thickness. In over oxidation time, the oxidation of Co bottom layer and flat interface of insulator can increase the bottom Co coercivity. But TMR ratio gradually decrease. TMR ratio is relevant with Cr thickness, insulator thickness, and oxidation time. The maximum TMR ratio was 14% at room temperature and the TMR ratio was decreased to half at 0.51 V.

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature (플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구)

  • Kim, Sung-Hoon;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.99-104
    • /
    • 2004
  • We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.

Interface Engineering in Superconducting Ultra-thin Film of Ga (Ga 극초박막의 계면특성과 초전도 물성제어에 대한 연구)

  • Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.212-215
    • /
    • 2010
  • Spin polarized tunneling studies were carried out with Al-Ga bilayer as a spin detector, by Meservey-Tedrow technique. The superconductor (SC)/Insulator (I)/Ferromagnet (FM) tunnel junctions were provided by ultra high vacuum molecular beam epitaxy (UHV-MBE) technique. The analysis of interfacial properties in the Al-Ga bilayer was also carried out by Auger electron spectroscopy. It was observed that the superconducting transition temperature and energy gap were raised in comparison with that of bulk Ga and pure ultrathin Al films. Current studies clearly show how one can modify the material properties at the interface just with a few monolayers.

Comparison of Soft Magnetic Properties of Permalloy and Conetic Thin Films (퍼멀로이와 코네틱 박막의 연자성 특성 비교)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.142-146
    • /
    • 2009
  • The soft magnetic property for the Corning glass/Ta(5 nm)/[Conetic, Permalloy)/Ta(3 nm) prepared by the ion beam deposition sputtering was investigated. The coercivity and saturation magnetic field of conetic (NiFeCuMo) and permalloy (NiFe) layer with easy and hard direction along to the applying magnetic field during deposition was compared with each other. The surface resistance of conetic film with a thickness of 10 nm was 2 times lower than one of permalloy film. The coercivity and the magnetic susceptibility of conetic film decreased and increased 3 times to one of permalloy film, respectively. These results suggest that a highly sensitive GMR-SV or MTJ using conetic film can be possible to develop the bio-device.

Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method (마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Kim, Cheol-Gi;Kim, Chong-Oh;Masakiyo Tsunoda;Migaku Takahashi;Ying Li
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Ferromagnetic tunnel junctions were fabricated by dc magnetron sputtering and plasma oxidation process. The local transport properties of the ferromagnetic tunnel junctions were studied using contact-mode Atomic Force Microscopy (AFM) and the local current-voltage analysis. Tunnel junctions with the structure of sub./Ta/Cu/Ta/NiFe/Cu/Mn$\_$75/Ir$\_$25//Co$\_$70/Fe$\_$30//Al-oxide were prepared on thermally oxidized Si wafers. Al-oxide layers were formed with microwave excited plasma using radial line slot antenna (RLSA) for 5 and 7 sec. Kr gas was used as the inert gas mixed with $O_2$ gas for the plasma oxidization. No correlation between topography and current image was observed while they were measured simultaneously. The local current distribution was well identified with the distribution of local barrier height. Assuming the gaussian distribution of the local barrier height, the ferromagnetic tunnel junction with longer oxidation time was well fitted with the experimental results. As contrast, in the case of the shorter time oxidation junction, the current mainly flow through the low barrier height area for its insufficient oxygen. Such leakage current might result in the decrease of tunnel magnetoresistance (TMR) ratio.

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Junction Size Dependence of Magnetic and Magnetotransport Properties in MTJs (자기터널절합에서 자기 및 자기저항의 접합크기 의존성)

  • Sankaranarayanan, V.K.;Hu, Yong-kang;Kim, Cheol-Gi;Kim, Chong-Oh;Lee, Hee-bok
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.369-373
    • /
    • 2003
  • Magneto-optic Kerr Effect(MOKE), AFM and magnetoresistance measurements have been carried out on as-deposited and annealed Magnetic Tunnel Junctions(MTJs) with junction sizes 180, 250, 320 and 380 $\mu\textrm{m}$ in order to investigate the correlation among interlayer exchange coupling, surface roughness and junction size. Relatively irregular variations of coercivity $H_{c}$ (∼17.5 Oe) and interlayer exchange coupling $H_{E}$ (∼17.5 Oe) are observed over the junction in as-deposited sample prepared by DC magnetron sputtering. After annealing at $200^{\circ}C$, $H_{c}$ decreases to 15 Oe, while $H_{ E}$ increases to 20 Oe with smooth local variation. $H_{E}$ shows very good correlation with surface roughness across the junction in agreement with Neel's orange peel coupling. The increasing slope per $\mu\textrm{m}$ of normalized $H_{c}$ and $H_{E}$ are same near junction edge along free-layer direction irrespective of junction size, giving relatively uniform $H_{c}$ and $H_{ E}$ for wider junction size. Thickness profiles of the junctions measured with $\alpha$-step show increasingly flat top surface for larger junctions, indicating better uniformity for large. junctions in agreement with the normalized$ H_{c}$ and H$/_{E}$ curves. TMR ratios also increase with increasing junction size, indicating improvement for larger uniform junctions.