• Title/Summary/Keyword: 자기치유

Search Result 219, Processing Time 0.028 seconds

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

Physical Properties of Self-healing Concrete Mixed with Hydrogel Carrier of Microorganism (미생물 혼입 하이드로젤 지지체 첨가에 따른 자기치유 콘크리트의 물성 변화)

  • Chu, Inyeop;Woo, Jinho;Woo, Sang-Kyun;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.24-29
    • /
    • 2018
  • The properties of concrete with addition of microgel - containing hydrogel support were investigated. As a result of measuring the slump of the self - healing concrete, the target slump was satisfied in all the mixing conditions, but the slump was decreased as the mixing amount of the hydrogel support increased. The change of porosity due to incorporation of hydrogel support was minimal. As a result of the evaluation of the compressive strength of the self - healing concrete, the incorporation of the hydrogel support did not affect the strength. However, under the same mixing condition, the dispersion value of the specimens tended to increase with increasing hydrogel support contents. As a result of the permeability test of self-healing concrete according to the incorporation of hydrogel support, it was confirmed that the mixing ratio of hydrogel support was effective to decrease the permeability coefficient.

Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen (시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성)

  • Kim, Dong-Hyun;Kang, Kook-Hee;Bae, Seung-Muk;Lim, Young-Jin;Lee, Seung-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Studies on self-healing have currently been diversified and the methods to evaluate the studies have become more diversified as well. Among them, the back-scattered electron (BSE) image acquired through the scanning electron microscope (SEM) is attempted as the means to evaluate the self-healing effect on cracks. In order evaluate by the BSE image, sophisticated pre-processing of specimen is critical and this injected inside the particle, pore and artificial crack of the hardener to stabilize the structure of the newly generated self-healing product and it enables to endure the stress on polishing without deformation. The impregnated specimen smoothen the surface to obtain the BSE image of high resolution that polishing is made for diamond suspension for wet polishing after dry polishing. As a result of evaluating the self-healing product on the impregnated and polished self-healing specimen, the generated product is formed from the surface of the artificial crack and the self-healing substances are confirmed as $Ca(OH)_2$ and C-S-H.

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

Experimental Study on the Quality Properties of Precast Concrete Utilizing Self-Healing Capsules as an Essential Technology for Smart City Implementation (스마트 시티 구현을 위한 요소기술로써 균열 자기치유 캡슐 활용 프리캐스트 콘크리트의 품질특성 평가에 관한 실험적 연구)

  • Sung-Rok Oh;Eun-Joon Nam;Neung-Won Yang;Yun-Wang Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2023
  • This paper aims to evaluate the quality characteristics and healing performance of precast concrete incorporating self-healing technology as a key technique for the construction of smart cities. The study found that precast concrete mixed with hybrid capsules exhibited a tendency of reduced slump and air content, impacting the quality characteristics. Specifically, the slump decreased by up to 14 %, and the air content by up to 9 %. Moreover, the inclusion of hybrid capsules in the concrete resulted in a maximum decrease of 16 % in compressive strength and 18 % in flexural strength. However, the introduction of hybrid capsules significantly enhanced the crack healing performance. The assessment through water permeability tests showed that the healing rate of 0.3 mm crack width after a 28-day healing period improved as the mixing ratio increased, with the healing rates at 1 %, 3 %, and 5 % hybrid capsule mixtures observed to increase by approximately 16 %, 25 %, and 32 %, respectively.

Development of Crack Monitoring System for Self-healing Repair Mortar Surface Using Image Processing Technique (이미지 처리 기법을 이용한 자기치유 보수 모르타르 시공표면의 균열 모니터링 시스템 개발)

  • Oh, Sang-Hyuk;Moon, Dae-Jung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.359-366
    • /
    • 2021
  • In this study, It was developed an monitoring cracks system based on image processing techniques in order to measure cracks, which are major damages in concrete, and to convert them into a database. The crack monitoring system consists of crack image captured equipment and a crack detection and analysis software. This system provides objective and quantitative data by replacing the conventional visual inspection. The crack detection algorithm w as verified through an indoor test using virtual cracks, and the amount of crack detection and crack width change was monitored by applying it to the self-healing repair mortar construction site. In the case of the crack width detected through image analysis, the maximum difference from the actual crack width was 0.0334mm. It was possible to detect microcracks of 0.1mm or less, and the effect of crack healing over time of the self-healing repair mortar was confirmed trough the field test.

Experimental Study on Artificial Crack Healing for Concrete Using Electrochemical Deposition Method (전기화학적 전착기법을 활용한 콘크리트의 인공 균열치유에 관한 실험적 연구)

  • Lee, Chang-Hong;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.409-417
    • /
    • 2009
  • In this study, autogenous crack healing and artificial crack healing using electrochemical electro deposition method were conducted to compare in the aspects of corrosion monitoring. Furthermore, the analysis of impressed voltage characteristics, galvanic current and linear polarization resistance comparison, and photo image processing technique were performed for quantitative comparisons of healing ratio. As a result, it was found that, in view of impressed voltage of artificial crack healing, the measured voltage was increased as time goes by. From the galvanic test results of artificial crack healing, the current vs. potential distribution value were formed widely in comparison with autogenous crack healing. In this point, it was shown that artificial crack healing has more eleatic resistance capacity than autogenous crack healing technique. Finally, it was found that artificial crack healing was 1.63 times higher than autogenous healing in view of crack healing ratio.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Strength and Healing Performance of the Mortar using Bacterial Pellet as a Self-Healing Material (박테리아 펠렛을 자기치유 소재로 사용한 모르타르의 강도 및 치유성능)

  • Jang, Indong;Son, Dasom;Ryu, Young-ung;Park, Woojun;Yi, Chongku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.112-119
    • /
    • 2020
  • In this study, cellulose-based bacterial pellets was used for the self-healing concrete manufacturing. The pellet is composed of complex cultured bacterial spore powder, methyl cellulose, two kinds of PVA nutrients and water, and is extruded through a hydraulic press to have a shape of 2mm in diameter to 3 to 4mm in length. Cellulose pellets expand at neutral pH, release bacteria and nutrients, and do not react in a basic environment, increasing the long-term survival rate of bacteria in cement mortar. In addition, pellet self-healing performance of pellet mortar was significantly higher than that of control mortar. Cellulose-based pellets are a new type of bacterial carrier system that will help develop self-healing concrete in the future by improving and optimizing pellets.

Correlation between Crack Width and Water Flow of Cracked Mortar Specimens Measured by Constant Water Head Permeability Test (정수위 투수시험에 의해 측정된 균열 모르타르 시편의 유출수량과 균열폭의 상관관계)

  • Choi, Seul-Woo;Bae, Won-Ho;Lee, Kwang-Myong;Shin, Kyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Recently, the researches of self-healing concrete technology are being carried out actively due to the advent of importance for the maintenance of concrete structures. A water permeability test has been widely used for the evaluation of self-healing performance. However, it is difficult to compare tests results since there is no standard test method related to the self-healing. A standard method for measuring the crack width does not exist neither though the self-healing performance is significantly influenced by the initial crack width. In this study, the effect of water head and crack width on water flow was investigated using a constant water head permeability test equipment. The correlation equation between the initial crack width and water flow was suggested through the regression analysis of test data, and the predicted crack widths agree well with the real crack widths measured using microscopy.