• Title/Summary/Keyword: 자기차폐

Search Result 119, Processing Time 0.028 seconds

Improvement of Magnetic SE Measurement of Shielded Rooms Using Rectangular Loop Antennas (직사각형 루프 안테나를 이용한 차폐실의 자기장 차폐효과 측정 방법 개선)

  • Park, Hyun Ho;Hyoung, Chang Hee;Kwon, Jong Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.320-323
    • /
    • 2019
  • This paper examines a disadvantage of low-frequency magnetic shielding measurement based on MIL-STD-188-125-1. A rectangular loop antenna is proposed as an improvement over conventional circular loop antennas for measuring magnetic shielding. Simulation and experiment are used to demonstrate that the proposed rectangular loop outperforms the circular loop for a more reliable shielding measurement at low frequency range.

Magnetic-Shielding Effectiveness Analysis of the Trigger Assembly of Small Arms (소구경 개인화기 격발신호 발생장치의 자기차폐효과 분석)

  • Lee, Kisu;Ahn, Joon Mo;Chae, Je-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.456-463
    • /
    • 2018
  • With the development of weapon systems by mounting various sensors, it makes important to analyze the precise functioning of sensor to external environment. In the case of small arms with magnetic sensor, the malfunction of small arms might be caused by strong external magnetic fields. In this study, the effects of magnetic sensor on external magnetic fields were analyzed, and optimal magnetic shield and shield structure were designed through M&S. In addition, the magnetic-shielding effectiveness of magnetic sensor in small arms was verified with commercial shielding materials. As a result, it was demonstrated that the Fe-Cu-Si-Nd-B with the structure of multi-layer metallic shields was shown the magnetic-shielding effectiveness of 83 % for an external permanent magnet and 19 % for an alternating magnetic field of 180 dBpT at 60 Hz, respectively.

Analysis of Low-Frequency Magnetic SE of a Metal Plate: Diffusion and Slot Effects (도체 판의 자기장 차폐효과 분석: 확산과 슬롯 효과)

  • Park, Hyun Ho;Kwon, Jong Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.324-327
    • /
    • 2019
  • This study analyzes the low-frequency magnetic shielding effectiveness (SE) of a metal plate, in terms of diffusion and slot effects, by conducting a numerical simulation and implementing an analytical solution. When the metal has a low conductivity, the SE is dominated by the diffusion effect. However, when the conductivity and frequency both increase, the slot has a major influence on the SE. These results can be used as guidelines in the shielding design and SE requirements of electromagnetic pulse protection facilities.

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.

Linear Actuator using Magnetic Shield of Rotating Magnet Wheel (부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용)

  • Shim, Ki-Bon;Park, Jun-Kyu;Lee, Sang-Heon;Jung, Kwang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

Measurement and Evaluation of VDT Electo-magnetic Wave (VDT 전자파의 측정 및 평가)

  • 박재희;김진호;김철중;조춘수
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.38-45
    • /
    • 1993
  • VDT는 저주파 대역에서 인체에 해롭다고 여겨지는 전자파를 발생시키고 있다. 선진제국에서는 VDT에 서 발생하는 전자파를 규제하기 위해 VDT 전자파 측정방법의 표준화와 안전 규제 등을 실시하고 있다. VDT와 관련한 대표적인 측정기준으로는 스웨덴의 MPR 기준이 있다. 본 연구에서는 MPR 기준에 의거 VDT의 전기장, 자기장 모두에 대해 거리별, 방향별, 높이별 세기를 측정하였다. 또한 VDT 전자파의 상대적 세기를 알아보기 위해 다른 전기제품인 전기담요, 헤어드리이어 등에 대한 비교측정도 수행하였 으며, 보안경의 전자파 차폐효과도 측정하였다. 측정결과, VDT 전기장은 전면에서 세기가 가장 크며, 후면으로 갈수록 작아지는 것으로 나타났으며, 자기장은 ELF 대역은 양측면에서, VLF 대역은 전면에서 그 크기가 가장 큰것으로 나타났다. 전기제품과의 비교에서는 VDT의 전기장, 자기장은 전기담요, 헤어 드리이어 등에 비해 크지 않은 것으로 나타났으며, 보안경은 접지해서 쓸때만 전기장 차폐효과가 큰것 으로 나타났다.

  • PDF

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.