• Title/Summary/Keyword: 자기차폐

Search Result 119, Processing Time 0.027 seconds

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Fabrication of a HTS SQUID Magnetometer for Magnetocardiogram (심자도 측정용 고온초전도 SQUID magnetometer의 제작)

  • Kim, In-Seon;Lee, Sang-Kil;Kim, Jin-Mok;Kwon, Hyuk-Chan;Lee, Yong-Ho;Park, Yon-Ki;Park, Jong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1997
  • $YBa_{2}Cu_{3}O_{7}$ single layer dc SQUID magnetometers, prepared on $1\;cm^{2}\;SrTiO_{3}$ substrates, have been fabricated and characterized. Based on the analytical description, a SQUID magnetometer design having a 8.5 mm pickup coil with 2.6 mm linewidth, and a SQUID inductance Ls = 50 pH with $3\;{\mu}m$ Josephson junctions is presented. The devices showed a maximum modulation voltage depth of $65\;{\mu}V$ and a magnetic field noise of 0.6 pT /$\sqrt{Hz}$ at 1 Hz. Clear traces of human magnetocardiogram could be obtained with the SQUID magnetometer operating at 77 K.

  • PDF

A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System (심자도 장비의 냉각장치 특성 최적화를 위한 기하 설계 변수 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Lee, Yong-Ho;Lim, Hyun-Kyoon;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • A magnetocardiogram (MCG) is a recording of the biomagnetic signals generated by cardiac electrical activity. Biomagnetic instruments are based on superconducting quantum interference devices (SQUIDs). A liquid cryogenic Dewar flask was used to maintain the superconductors in a superconducting state at a very low temperature (4 K). In this study, the temperature distribution characteristics of the liquid helium in the Dewar flask was investigated. The Dewar flask used in this study has a 30 L liquid helium capacity with a hold time of 5 d. The Dewar flask has two thermal shields rated at 150 and 40 K. The temperatures measured at the end of the thermal shield and calculated from the computer model were compared. This study attempted to minimize the heat transfer rate of the cryogenic Dewar flask using an optimization method about the geometric variable to find the characteristics for the design geometric variables in terms of the stress distribution of the Dewar flask. For thermal and optimization analysis of the structure, the finite element method code ANSYS 10 was used. The computer model used for the cryogenic Dewar flask was useful to predict the temperature distribution for the area less affected by the thermal radiation.

Embodiment of High Impedance Surface of Meta-Material Characteristic Using Symmetrical AMC Structure and Its SAR Analysis (대칭형 인공자기도체 구조를 이용한 메타물질 특성의 고임피던스 표면 구현 및 SAR 특성 분석)

  • Lee, Seungwoo;Lee, Moung-Hee;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.744-750
    • /
    • 2013
  • In this paper, we proposed new type of an artificial magnetic conductor(AMC) structure, which has a high impedance surface for realizing the meta-material characteristics. The designed AMC structure set a goal of 3.2GHz, and the reflector, which consists of periodically arrayed AMCs is fabricated and measured. The high impedance improves the reflection coefficient, decreases the system size and interference, and increases the antenna performance. The structure has embodied the high impedance by the thickness and relative permitivity of the dielectric substrate and the design configuration without the metallic via hole which connects the AMC to the GND. The bandwidth is 150% broader than the similar AMC structures. Also, the distance between the antenna and the AMC reflector is decreased by ${\lambda}/10$ as working as the metal(PEC) reflectors. The antenna radiation characteristics are 3dB increased at 10mm away from reflector by measurement. The proposed reflector could be inserted in the portable mobile devices, and the antenna's performance has improved by the reflector. The specific absorption rate is dramatically decreased over 94% because the back radiation of the antenna is shielded.

Improvement of Power Transfer Efficiency Using Negative Impedance Converter for Wireless Power Transfer System with Magnetic Resonant Coupling (부성 임피던스 변환기를 적용한 자기공명 방식 무선전력전송 시스템의 효율 개선)

  • Yoon, Se-Hwa;Kim, Tae-Hyung;Park, Jin-Kwan;Kim, Seong-Tae;Yun, Gi-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.933-940
    • /
    • 2017
  • A wireless power transfer system with a negative impedance converter(NIC) was designed and tested. The system was investigated to identify the effects of ferrites and conductors. To improve the power transfer efficiency(PTE), the Q-factor of the transmitter was enhanced by the negative resistance generated by the NIC. The NIC was composed of an Op-Amp and resistors. The negative resistance was obtained with respect to a resistor connected in a feedback loop. The dimension of the Tx coil was $250mm{\times}250mm{\times}0.8mm$. The impedance and Q-factor were $31+j1874{\Omega}$ and 60, respectively. The negative resistance was selected to be $30{\Omega}$, and the Q-factor was increased to 900 by reduction of the transmitter resistance, which was about 15 times higher than that of a conventional transmitter. The measured PTE was greatly improved in comparison to that of a conventional system. These results demonstrate that the PTE is enhanced by using the NIC.

Noise Characteristics of 64-channel 2nd-order DROS Gradiometer System inside a Poorly Magnetically-shielded Room (저성능 자기차폐실에서 64채널 DROS 2차 미분계 시스템의 잡음 특성)

  • Kim, J.M.;Lee, Y.H.;Yu, K.K.;Kim, K.;Kwon, H.;Park, Y.K.;Sasada, Ichiro
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have developed a second-order double relaxation oscillation SQUID(DROS) gradiometer with a baseline of 35 mm, and constructed a poorly magnetically-shielded room(MSR) with an aluminum layer and permalloy layers for magnetocardiography(MCG). The 2nd-order DROS gradiometer has a noise level of 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz inside the heavily-shielded MSR with a shielding factor of $10^3$ at 1 Hz and $10^4-10^5$ at 100 Hz. The poorly-shielded MSR, built of a 12-mm-thick aluminum layer and 4-6 permalloy layers of 0.35 mm thickness, is 2.4mx2.4mx2.4m in size, and has a shielding factor of 40 at 1 Hz, $10^4$ at 100 Hz. Our 64-channel second-order gradiometer MCG system consists of 64 2nd-order DROS gradiometers, flux-locked loop electronics, and analog signal processors. With the 2nd-order DROS gradiometers and flux-locked loop electronics installed inside the poorly-shielded MSR, and with the analog signal processor installed outside it, the noise level was measured to be 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz on the average even though the MSR door is open. This result leads to a low noise level, low enough to obtain a human MCG at the same level as that measured in the heavily-shielded MSR. However, filters or active shielding is needed fur clear MCG when there is large low-frequency noise from heavy air conditioning or large ac power consumption near the poorly-shielded MSR.

  • PDF

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

The influence of magnet on tissue healing after immediate implantation in fresh extraction sites in dogs (성견에서 발치 후 즉시 식립 임플란트에 설치한 자석이 주위 조직에 미치는 영향)

  • Yu, Seok-Min;Cho, In-Ho;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • Statement of problem: The clinical use of electric and electomagnetic fields for fracture healing applications began in the early 1970s. Since then, several technologies have been developed and shown to promote healing of fractures. Developments of these devices have been aided in recent years by basic research and several well controlled clinical trials not only in the medical field but in dentistry. Purpose: The purpose of this study was to compare alveolar bone reduction following immediate implantation using implants onto which magnets were attached in fresh extracted sockets. Material and methods: Four mongrel dogs were involved. Full buccal and lingual mucoperiosteal flaps were elevated and third and fourth premolars of the mandible were removed. Implants with magnets and implants without magnets were installed in the fresh extracted sockets and after 3 months of healing the animals were sacrificed. The mandibles were dissected and each implant sites were sampled and processed for histological examination. Results: The marginal gaps that were present between the implant and walls of the sockets at the implantation stage disappeared in both groups as a result of bone fill and resorption of the bone crest. The buccal bone crests were located apical of its lingual counterparts. At the 12 week interval the mean of marginal bone resorption in the control group was significantly higher than that of the magnet group. The majority of specimens in magnet group presented early bone formation and less resorption of the buccal marginal bone compared to the control group. Conclusion: Within the limitations of this study, it could be concluded that implants with magnets attached in the early stages of implantation may provide more favorable conditions for early bone formation and reduce resorption and remodeling of marginal bone.

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF