무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로 부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.
해싱 기반 이미지 검색에서는 조작된 이미지의 해시코드가 원본 이미지와 달라 동일한 이미지 검색이 어렵다. 본 논문은 이미지의 질감, 모양, 색상 등 특징 정보로부터 지각적 해시코드를 생성하는 자기 감독 기반 딥해싱 모델을 제안하고 평가한다. 비교 모델은 오토인코더 기반 변분 추론 모델들이며, 인코더는 완전 연결 계층, 합성곱 신경망과 트랜스포머 모듈 등으로 설계된다. 제안된 모델은 기하학적 패턴을 추출하고 이미지 내 위치 관계를 활용하는 SimAM 모듈을 포함하는 변형 추론 모델이다. SimAM은 뉴런과 주변 뉴런의 활성화 값을 이용한 에너지 함수를 통해 객체 또는 로컬 영역이 강조된 잠재 벡터를 학습할 수 있다. 제안 방법은 표현 학습 모델로 고차원 입력 이미지의 저차원 잠재 벡터를 생성할 수 있으며, 잠재 벡터는 구분 가능한 해시코드로 이진화 된다. CIFAR-10, ImageNet, NUS-WIDE 등 공개 데이터셋의 실험 결과로부터 제안 모델은 비교 모델보다 우수하며, 지도학습 기반 딥해싱 모델과 동등한 성능이 분석되었다.
사회 환경 측면이나 도서관 현장에서 독서프로그램 담당 사서의 수요가 지속적으로 요구됨에도 불구하고 문헌정보학과에서는 독서관련 교과목 개설이 미비하며, 교육내용 또한 이론위주의 교육이 이루어지고 있다. 이에 본 연구에서는 독서교육자의 자질을 함양하기 위한 실무중심의 독서관련 교과목 교수-학습법을 개발하였다. 즉, 독서체험을 위한 자기주도적 독서 및 독후포트폴리오 제작활동과 실무 중심의 학습동기 유발 독서프로그램 운영과 도서관현장 연계 협동 프로젝트 수행에 대한 교수-학습법을 개발 적용하였다.
빌딩, 집에 설치되어 있는 점유 센서는 사람이 없으면 소등하고, 반대이면 점등한다. 현재는 주요 센서로 PIR(pyroelectric infra-red)이 널리 사용되고 있다. 최근에 비전 카메라 센서를 이용하여 사람 점유를 검출하는 연구가 진행되고 있다. 카메라 센서는 정지된 사람을 검출할 수 없는 PIR의 단점을 극복할 수 있는 장점이 있다. 이동 및 정지된 사람의 추적은 카메라 점유 센서의 주요 기능이다. 본 논문에서는 합성곱 신경망 모델과 자기 조직화 지도를 활용한 온라인 사람 추적 기법을 제안한다. 오프라인에 모델을 학습시키기 위해서는 많은 수의 훈련 샘플이 필요하다. 이러한 문제를 해결하기 위해, 학습되지 않은 모델을 사용하고, 실험 영상으로부터 직접 훈련 샘플을 수집하여 모델을 갱신한다. 오버헤드 카메라로 실내에서 촬영한 영상을 이용하여, 제안 방법이 효과적으로 사람을 추적하고 있음을 실험을 통해 증명하였다.
다변량 자료를 분석하는 데 있어서 관측 개체들의 분포적 양태를 파악하는 것은 자료 특성의 이해에 도움이 될 뿐만 아니라 이후 모형화 과정에도 큰 도움을 준다. 이를 위하여 다변량자료의 저차원 시각화에 대한 많은 연구가 진행되어 왔다. 그 중 하나가 코호넨(T. Kohonen)의 자기조직화지도(Self-Organizing Map; SOM)이다. SOM은 저차원 그리드 공간에 고차원 다변량 자료를 축약하여 시각적으로 나타내는 비지도 학습법의 일종으로 최근 들어 통계 분석자들이 많은 관심을 가지고 있는 분야이다. 그러나 SOM은 개체공간의 연속형으로 표현되는 개체를 저차원 그리드 공간에 승자노드에 의해 비연속적으로 표현한다는 단점을 지니고 있다. 본 논문에서는 SOM을 통계적 목적으로 사용하기 위해 요구되는 그리드 공간에 개체를 연속적으로 표현하는 방법들을 제안하고 환용 예를 제시 하고자 한다.
Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.
본 연구는 대학의 말하기 교육 유형인 발표와 토론 수업을 중심으로 동료 및 자기 평가와 피드백을 통해 말하기 능력 함양을 위한 교육 방안을 탐색해보고, 그 효과를 확인하는데 목적이 있다. 연구대상 및 내용은 H대학교의 교양 필수인 <독서와 소통> 수업을 수강한 1학년 학생들로 '읽기, 말하기, 쓰기'의 통합 활동 중 말하기 활동과 그 효과에 한정하여 제시한 것이다. 말하기 교육에서 동료 및 자기 평가와 피드백은 학생들 간에 상호 공감대를 형성하고 협력 하에 말하기에 필요한 역량 함양과 자기 발견 및 소통을 통한 주도적인 학습이 가능하게 한다. 연구결과, 다양한 말하기 실습을 통해 말하기 태도 및 심리적 측면에 긍정적인 효과가 있었으며, 평가와 피드백 활동이 학생들에게 유의미한 학습 효과를 가져다 줬음을 확인할 수 있었다. 대학생의 의사소통 능력의 중요성이 강조되는 만큼 현실적이며 유용한 말하기 교육 및 지도 방안들이 지속적으로 연구 및 개발되어야 한다고 본다.
대부분의 초등학생 가정마다 컴퓨터를 갖고 있고, 초등학교 교육과정의 재량활동시간에 ICT 교육을 실시하고 있다. 그러나 다른 한 편으로 초등학생들의 경우에 컴퓨터 게임을 많이 하다 보면 정보를 활용하는 순기능을 잃어버리고 역기능이 학습지도와 생활지도 등의 문제로 나타나기도 한다. 본 연구는 대전 및 충청남북도 지역의 초등학교 5, 6학년 학생들 650명을 대상으로 컴퓨터 게임 중독 실태를 파악하고, 중요한 요인인 자기통제 및 학교생활적응과 컴퓨터 게임 중독 간의 관계를 분석하였다. 연구 결과, 응답자의 15.6%에 해당하는 101명이 컴퓨터 게임 중독 가능성이 높은 상집단에 속하는 것으로 나타났다. 또한 남학생인 경우, 읍 면지역에 거주하는 경우 그리고 성적이 낮을수록 게임 중독의 가능성이 높은 것으로 나타났다. 이와 더불어서, 자기통제력이 높을수록 그리고 학교생활에 잘 적응할수록 게임 중독 가능성이 낮은 것으로 밝혀졌다.
본 연구는 단계 분기의 피드백이 수학 학습부진아의 수차 성취도, 수학에 대한 태도, 자기점검 정도에 미치는 효과를 규명하는데 목적을 두었다. 이 연구의 대상은 대전에 소재한 H중학교 2학년 수학 학습부진아 23명을 대상으로 실험집단과 비교집단으로 구분하였다. 실험 집단에는 단계 분기의 피드백을 실시하였고, 비교 집단은 일반적인 형성평가의 피드백을 실시하였다. 연구기간은 6 주 동안 이루어졌다. 연구 결과, 단계 분기의 피드백 집단이 일반적인 형성평가 집단에 비하여 수학 성취도와 수학에 대한 태도에 유의한 효과(p<.05)가 있었으며, 자기점검 정도에서도 더 향상이 되었다.
본 논문에서는 아동의 스마트폰 보급률과 사용 시간이 증가함에 따라 교육용 애플리케이션 개발의 필요성을 인지하고, 아동에 최적화 되어 있으며 이미지 인식 기술을 접목해 아동이 쉽게 사용할 수 있도록 고안된 애플리케이션 서비스의 개발에 대한 아이디어를 제안한다. 이미지 인식 기술을 활용해 아동이 쉽게 스마트폰의 카메라로 사물을 촬영하고 이에 대한 적절한 검색 결과를 손쉽게 파악할 수 있도록 도움을 주는 서비스이다. 이를 통해, 온라인 수업 등으로 인해 교사의 직접적인 지도를 받기 어려운 환경 속에서도 아동이 자기주도적으로 손쉽게 공부하거나 더 알아보고 싶은 대상을 찾아보고 학습하여 자기주도적 학습 능력을 함양하고 스마트폰의 올바른 사용 방법을 익히는 데에 공헌할 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.