• 제목/요약/키워드: 자기조직화 형상지도 알고리즘

검색결과 11건 처리시간 0.021초

자기조직화 형상지도를 이용한 오염 물고기 움직임 분석 (Polluted Fish`s Motion Analysis Using Self-Organizing Feature Maps)

  • 강민경;김도현;차의영;곽인실
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.316-318
    • /
    • 2001
  • 본 논문에서는 자기조직화 형상지도(Self-organizing Feature Maps)를 사용하여 움직이는 물체에 대해 움직임의 특성을 자동으로 분석하였다. Kohonen Network는 자기조직을 형성하는 unsupervised learning 알고리즘으로서, 이 논문에서는 생태계에서의 데이터를 Patternizing하고, Clustering 하는데 사용한다. 본 논문에서 Kohonen 신경망의 학습에 사용한 데이터는 CCD 카메라로 물고기의 움직임을 추적한 좌표 데이터이며, diazinon 0.1 ppm을 처리한 물고기 점 데이터와 처리하지 않은 점 데이터를 각각 낮.밤 약 10시간동안 수집하여, \circled1처리전 낮 데이터 \circled2처리전 밤 데이터 \circled3처리전 낮 데이터 \circled4처리후 밤 데이터 각각 4개의 group으로 분류한 후, Kohonen Network을 사용하여 물고기의 행동 차이를 분석하였다.

  • PDF

자기 조직화 특징 지도(SOFM)와 주성분 분석을 이용한 손 형상 검출 및 인식 (Hand Shape Detection and Recognition using Self Organized Feature Map(SOMF) and Principal Component Analysis)

  • 김경호;이기준
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.28-36
    • /
    • 2013
  • 본 논문은 손 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 손 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 전처리 과정을 거쳐 손 영역만을 분할한 후 자기조직화 특징 지도(SOFM: Self Organized Feature Map) 알고리즘을 이용하여 손 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 손 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 손 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산 량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.

기둥축소량 보정을 위한 기둥의 최적그루핑기법 (The Optimal Column Grouping Technique for the Compensation of Column Shortening)

  • 김영민
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.141-148
    • /
    • 2011
  • 본 논문에서는 기둥축소량 보정의 효율성을 증진시키기 위한 방안으로서 유사한 축소 경향을 보이는 기둥들을 동일 그룹으로 묶는 기둥의 최적그루핑기법에 대하여 연구하였다. 기둥의 최적그루핑은 무감독학습에 의해 입력데이타의 패턴을 스스로 분류할 수 있는 코호넨의 자기조직화 형상지도 알고리즘을 이용하였다. 본 연구에 적용된 코호넨 네트워크는 두 개의 입력뉴런과 분류할 기둥그룹 개수만큼의 출력뉴런으로 구성된다. 입력뉴런에는 기둥축소량의 정규화된 평균과 표준편차가 입력되며, 출력뉴런에는 각 기둥이 속하게 될 기둥그룹이 출력된다. 제안된 알고리즘을 실제 축소량 해석이 수행된 두 개의 건물에 적용하여 그 적용성을 평가하였다. 적용결과 동일 그룹으로 분류된 기둥들은 서로 인접하고 있으며 서로 다른 기둥그룹끼리는 교차하지 않는 등 유사한 축소 경향을 보였다. 이로부터 본 연구의 기둥축소량의 최적그루핑 알고리즘은 충분한 실무적용성이 있음을 확인하였다.

SOFM신경망을 이용한 수화 형상 인식 (Sign Language Shape Recognition Using SOFM Neural Network)

  • 김경호;김종민;정재영;이웅기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.283-284
    • /
    • 2009
  • 본 논문은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다.

계층적 자기조직화 분류기를 이용한 다수 음성자판의 생성과 레이블링 (Creation and labeling of multiple phonotopic maps using a hierarchical self-organizing classifier)

  • 정담;이기철;변영태
    • 한국통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.600-611
    • /
    • 1996
  • 최근, 신경망 모델의 적응성과 학습성을 이용한 음성인식 연구가 진행되어 왔다. 그러나, 기존의 신경망 모델로는 한국어 음성의 조음결합의 처리 및 유사 음소간의 경계 분류가 용이하지 않다. 또한, 한 개의 형상지도를 이용하는 경우 이질적인 음성자료의 처리를 위한 학습속도의 급격한 증가와 균일한 학습 및 판별방법의 적용이 갖는 부정확성이 야기될 수 있다. 이에따라, 본 논문에서는 계층적 자기조직화 분류기(HSOC)를 이용한 신경망타자기를 설계하고, 관련 알고리즘들을 제안한다. 본 HSOC는 Kohonen의 자기조직화형상지도(SOFM)를 이용하여 학습시 입력되는 음소 데이타를 계층적인 구조를 갖는 다수의 형상 지도(map) 즉 음성자판에 배치한다. 또한 본 논문에서는 자판의 수효, 각 자판의 크기, 소속될 음소의 선택과 배치, 적합한 학습 및 인식기법의 자동 결정을 위한 알고리즘을 제시하고 실험하여 자기조절식인 음성자판을 구성하였다. 자판을 분류하는 방식을 언어학적 사전지식에 의존할 경우 언어학적 지식의 습득과 적용방법(예를 들면, 확장 음소의 처리)등을 결정하는 어려움을 가지는 반면, 본 HSOC를 이용하면 주어진 입력 데이타에 적합한 다수의 음성자판을 자기 조절식으로 구성할 수 있는 장점이 있다. 제안된 방식에 따라 최종 생성된 세 개의 한글 음성자판은 최적 자판과 최적 전처리기법을 갖추고있으며, 기존의 언어학적 지식과도 부합됨을 확인할 수 있었다.

  • PDF

SOFM 신경망을 이용한 수화 형상 인식 (Sign Language Shape Recognition Using SOFM Neural Network)

  • 박경우
    • 통합자연과학논문집
    • /
    • 제3권1호
    • /
    • pp.38-42
    • /
    • 2010
  • 인간은 정보전달을 위하여 언어 이외에 동작, 표정과 같은 비언어적인 수단을 이용한다. 이러한 비언어적인 수단을 정확히 분석 할 수 있다면 인간과 컴퓨터간의 자연스럽고 지적인 인터페이스를 구축할 수 있게 된다. 본 논문은 별도의 센서를 부착하지 않은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다. 제안 방법으로는 피부색 정보를 이용하여 배경으로부터 손 영역만을 추출한 후 추출된 손 영역의 형상을 인식한다(전처리과정으로 모델이미지의 사이즈와 압축 및 컬러에 대한 정보를 정규화 시켰다). 또한 인식 효율을 높이기 위해 SOFM 신경망 알고리즘을 적용함으로서 보다 안정적으로 손 형상을 인식할 수 있게 되었으며, 손 형상 인식률에 대한 안전성과 정확성을 향상시킬 수 있었다. 그리고 인식된 손 형상의 의미를 텍스트로 보여줌으로서 사용자의 의사를 정확하게 전달할 수 있다.

일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구 (A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

다중 신경망을 이용한 영상 분류기에 관한 연구 (A Study on an Image Classifier using Multi-Neural Networks)

  • 박수봉;박종안
    • 한국음향학회지
    • /
    • 제14권1호
    • /
    • pp.13-21
    • /
    • 1995
  • 본 논문에서는 신경망 학습에 의한 영상분류 알고리즘을 개선하였으며, 이것은 입력패턴 생성부와 분류을 위한 역전파 알고리즘에 의한 광역신경망으로 구성된다. 입력패턴을 위한 특징값으로는 자기조직화 형상지도 학습에 의해 얻은 코드북 데이타를 특징벡터로 이용한다. 이것은 입력벡터로서 원영상에 충실하면서 입력 뉴런수를 감소시킨다. 분류기에 사용된 광역망 알고리즘은 가중치와 유니트 오프셋 제어가 가능하도록 역전파 알고리즘에 제어부와 어드레스 메모리부를 삽입하였다. 실험결과 이들 분류기는 학습시 국소최소점에 빠지지 않게 되며, 대규모 신경망을 구현하고자 할 때 망구조를 간단히 할 수 있다. 또한 이것은 동작속도를 크게 개선할 수 있다.

  • PDF

적응적 자기 조직화 형상지도 (Adaptive Self Organizing Feature Map)

  • 이형준;김순협
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.83-90
    • /
    • 1994
  • 본 논문에서는 코호넨(Kohonen)의 SOFM (Self-Organizing Feature Map) 알고리즘의 단점을 해결하기 위한 새로운 학습 알고리즘 ASOFM(Adaptive Self-Organized Feature Map)을 제안한다. 코호넨의 학습 알고리즘은 초기화된 연결 벡터에 대하여 극소점에 빠지는 경우도 있다. 그러나 제안된 알고리즘에서는 학습과정중에 네트워크의 상태를 평가할 수 있는 목적함수(object function)을 사용하였고, 이 함수의 출력에 따라 학습의 각 시점에서 적응적으로 학습률의 재조정이 가능하였다. 이 결과, 네트워크의 상태가 최소점에 수렴함이 보증 되고 학습률의 적응성에 의해 임의의 학습패턴에 대한 학습의 일반화 능력이 보장되었다. 또한 제안된 알고리즘은 코호넨의 알고리즘보다 약 $70\%$이상의 학습시간을 단축한다.

  • PDF

방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구 (A Study on Face Recognition Using Diretional Face Shape and SOFM)

  • 김승재;이정재
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.109-116
    • /
    • 2019
  • 본 논문은 얼굴 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 얼굴 형상을 입력정보로 사용하여 전처리 과정을 거쳐 얼굴 영역만을 분할한 후 자기 조직화 특징 지도(SOFM) 알고리즘을 이용하여 얼굴 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 얼굴 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 얼굴 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.