• Title/Summary/Keyword: 자기이방성 상수

Search Result 53, Processing Time 0.03 seconds

제일원리 계산에 의한 Fe/Pt (001) 표면의 평형 구조 및 자기이방성 연구

  • Lee, Eung-Gwan;Choe, Hui-Chae;Hwang, Yu-Bin;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.316-316
    • /
    • 2011
  • 제일원리 계산으로 Fe/Pt (001) 표면의 표면상태도를 계산하고 표면상태도로 부터 얻어진 평형 Fe/Pt (001) 표면구조의 자기이방성에너지를 계산하였음. 계산된 표면상태도로 부터 Fe-rich $L1_2$ 구조와 수직 $L1_0$ 구조가 가장 안정한 표면 Fe/Pt (001) 구조임이 밝혀졌음. 제일원리로 계산 된 두 구조의 자기이방성에너지를 관측하여 두 구조의 자기용이축이 모두 [001] 방향으로 정렬 됨을 확인하였다. 자기이방성에너지가 격자 변화와 표면 형성 중 어떤 원인에 의해 발생하는지 판단하기 위해서 표면구조, 벌크구조, 및 표면구조와 동일한 격자상수를 가진 벌크구조를 비교 하였다. 비교 결과에 의해 자기이방성에너지의 주 원인은 표면 형성임이 밝혀졌으며 이를 좀 더 명확히 하기위해 상태밀도함수를 계산하였다. 상태밀도함수 계산 결과 Fe 원자의 $3d_{z2}$ 오비탈의 페르미 준위 아래에서의 상태가 표면이 형성되면서 증가하는 것을 관측하였으며 이는 [001] 방향으로의 자기이방성을 증가시키는 오비탈이므로 표면 형성에 따른 자기이방성에너지 증가는 Fe 원자의 $3d_{z2}$ 오비탈에 의함이 판명되었다.

  • PDF

Behavior of Spin Waves Excited in Magnetic Thin Film (자성 박막에서 여기되는 스핀파 거동)

  • 한기평;손영준;백문철;조경익
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The spin wave absorption spectra are obtained by a simultaneous solution of the Maxwell equation and the Gilbert equation considering the boundary condition of electromagnetic wave and magnetization in the film surfaces. The physical parameters that influence the absorption energy are thickness, exchange stiffness constant, surface magnetic anisotropy, magnetization. damping factor, electric resistivity of the thin film. We investigated how these parameters affect the resonance field, the linewidth and the intensity of the spin wave spectrum.

  • PDF

Thickness Dependence of Ferromagnetic Resonance Properties in NiFe Thin Films (NiFe 박막의 두께에 따른 강자성 공명 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • The out-of-plane and in-plane angular dependence of ferromagnetic resonance field was measured in NiFe thin films fabricated by magnetron sputtering. The effective magnetization was obtained from the out-of-plane angular dependence of ferromagnetic resonance field, which was well agreed with calculated one. The decrease of effective magnetization with NiFe thickness was due to the surface anisotropy constant of $K_s=-0.23\;erg/cm^2$. The in-plane uniaxial anisotropy fields were obtained from the in-plane angular dependence of ferromagnetic resonance field. The easy axis of in-plane uniaxial anisotropy field was rotated to the reverse direction of applied magnetic field during sample fabrication, which was explained by the antiferromagnetic NiFeO layer at sample surface.

Determination Errors of Saturation Magnetization and Magnetocrystalline Anisotropy Constant from Magnetization Curves of Magnetically (일측이방성 다결정의 자화곡선을 이용한 포화자화 및 결정자기이방성상수 결정에서의 오차분석)

  • Kim, M.J.;Hur, J.;Kim, Y.B.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.173-176
    • /
    • 1999
  • Errors of saturation magnetization and magnetocrystalline anisotropy constant determined by magnetization curve of magnetically aligned unixial power were analyzed. In case of alignment factor ${\Theta}_0=10{\circ}$, magnetic constant errors of $Nd_2Fe_{14}B$ were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}13\;{\%}$, respectively, and magnetic constant errors of Ba-ferrite were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}17\;{\%}$. In this method, $M_s$ was found to be determined with high accuracy. High alignment is desirable for high accuracy.

  • PDF

Analysis of Microwave Permeability and Damping Constant in Amorphous CoFeHfO Thin Film (비정질 CoFeHfO 박막 재료의 마이크로파 투자율 및 감쇠상수 분석)

  • Kim, Dong-Young;Yoon, Seok-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • The saturation magnetization and uniaxial anisotropy constant were obtained from magnetization and torque curves measurement in high resistive CoFeHfO thin film. The measured results were used for the analysis of the microwave complex permeability based on Landau-Lifshitz-Gilbert (LLG) theory. The high resistive CoFeHfO thin films showed very low damping constants of ${\alpha}$ = 0.014. The results are interpreted in terms of various magnetic phase with very low damping constant, which were existing inside the CoFeHfO thin film, through the linewidth analysis of the ferromagnetic resonance signal with magnetic field.

Brillouin Light Scattering Study of Magnetic Anisotropy in GaAs/Fe/Au System (Brillouin Light Scattering을 이용한 GaAs/Fe/Au 구조의 자기이방성)

  • Ha, Seung-Seok;You, Chun-Yeol;Lee, Suk-Mock;Ohta, Kenta;Nozaki, Takayuk;Suzuki, Yoshishige;Roy, W. Van
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.147-153
    • /
    • 2008
  • It has been well-known that the Fe/GaAs heterostructure has a small lattice mismatch of 1.4% between Fe and GaAs, and the Fe layer is grown epitaxially on the the GaAs substrate. There are rich physics are observed in the GaAs/Fe interface, and the spininjection is actively studied due to its potential applications for spintronics devices. We fabricated Fe wedge layer in the thickness range $0{\sim}3.4$ nm on the GaAs(100) surface with 5-nm thick Au capping layer. The magnetic anisotropy of the Fe/GaAs system was investigated by employing Brillouin light scattering(BLS) measurements in this study. The spin wave excitation of Fe layer was studied as the function of intensity and the in-plane angle of external magnetic field, and thickness of Fe layer. Also these various dependences were analyzed with analytic expression of spin wave surface mode in order to determine the magnetic anisotropies. It has been found that the GaAs/Fe/Au system has additional uniaxial magnetic anisotropy, while the bulk Fe has biaxial anisotropy. The uniaxial anisotropy shows increasing dependency respected to decreasing thickness of Fe layer while biaxial anisotropy is reduced with Fe film thickness. This result allows the analysis that the uniaxial anisotropy is originated from interface between GaAs surface and Fe layer.

A Study on the Ferromagnetic Resonance of FeNb Thin Films (FeNb 박막의 강자성 공명 연구)

  • Lim, Woo-Young;Baek, Jong-Sung;Lee, Soo-Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.120-126
    • /
    • 2004
  • In order to understand the temperature dependence of magnetic properties of $F_{84}Nb_{16}$(wt.%) thin films, ferromagnetic resonance experiments have been carried out. The ferromagnetic resonance spectra for all temperatures consist of several volume modes and one (or two) surface modes. It is suggested that both surface of the film have a perpendicular hard axis to the film plane (negative surface magnetic anisotropy). Saturation magnetization coincides with the Block's T$\^$2/3/ and spectroscopic splitting factor is almost constant in the temperature range from 113 K to 293 K. The surface magnetic anisotropy constant K$\_$s2/ of the film-substrate interface increased with decreasing temperature in the temperature range from 233 K to 293 K. The surface magnetic anisotropy constant K$\_$s1/ of the air-substrate interface decreased from -0.322 erg/$\textrm{cm}^2$ to -0.394 erg/$\textrm{cm}^2$ as the temperature decreased to 253 K and was almost constant below 233 K.233 K.