• Title/Summary/Keyword: 자기수축

Search Result 239, Processing Time 0.033 seconds

Prediction of Autogenous Shrinkage on Concrete by Unsaturated Pore Compensation Hydration Model (불포화 공극 보정 수화도 모델을 이용한 콘크리트의 자기수축 예측)

  • Lee, Chang Soo;Park, Jong Hyok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.909-915
    • /
    • 2006
  • To predict autogenous shrinkage of concrete, unsaturated pore compensation factor could be calculated by experiments of autogenous shrinkage of cement paste on the assumption that the differences between degree of hydration and strain rate of autogenous shrinkage are unsaturated pore formation rate. Applying unsaturated pore compensation factor on modified Pickket model considering contribution factor and non-contribution factor to autogenous shrinkage of concrete, experimental data and existing model were compared. From the results modified Pickket model was verified to present similar tendency between Tazawa model and experimental data, but CEB-FIP model might be corrected because this model uses ultimate autogenous shrinkage underestimated and the same autogenous time function of concrete material properties considering only compressive strength.

Effects of Specimen Shape on Hydration Heat and Autogenous shrinkage at an early (시험체 형상에 따른 고강도 콘크리트의 수화열 및 자기수축 초기특성 분석)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.915-918
    • /
    • 2008
  • Hydration heat and autogenous shrinkage are generated essentially by the same hydration. Many researchers have studied the close relationship between hydration temperature and autogenous shrinkage but hardly any research has been undertaken to explain the specific numerical relation. In this study, early age properties of hydration heat and autogenous shrinkage of specimen whose section size was changed were analyzed, and relationship between hydration heat and autogenous shrinkage was investigated. In the results of the study, inner temperature and autogenous shrinkage increased as the section size increased. And rise and rise ratio of hydration temperature and autogenous shrinkage in hydration heating section and autogenous shrinking section are increased too. Temperature rise and autogenous shrinkage rise increased respectively, as hydration heating velocity and autogenous shrinking velocity increased. And autogenous shrinkage rise and autogenous shrinking velocity increased as hydration heating velocity increased.

  • PDF

Differential Drying Shrinkage of concrete an Early Ages Considering Self-desiccation (자체건조를 고려한 초기재령 콘크리트의 부등건조수축)

  • 김진근;이칠성
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.197-204
    • /
    • 1998
  • 초기재령에서 외기에 노출된 콘크리트는 수분확산으로 인하여 부등건조수축이 발생하고, 또한 자체건조로 인하여 자기수축도 발생한다. 따라서 콘크리트 재부의 수축변형도는 이러한 자기수축을 포함하고 있으므로 이를 고려해야 한다. 본 연구에서는 초기재령에서 콘크리트 강도에 따라 자기수축의 영향을 고려하여 부둥건조수축에 대한 실험과 해석을 수행하였다. 또한 콘크리트 내부의 부등수분분포로 인한 수축변형도에 대하여 실험결과와 해석결과를 비교하여, 해석방법의 타당성을 검증하였다. 실험 및 분석결과에 의하면 저강도콘크리트는 수분확산으로 인하여 주로 수축현상이 일어나고 자기수축의 영향은 거의없었다. 그렇지만 고강도 콘크리트는 자기수축에 의해서도 영향을 받았다. 그리고 콘크리트의 부등건조수축은 강도에 따라 큰 차이를 나타냈다. 또한 제시한 해석방법에 의한 해석결과는 실험결과를 잘 예측하였다.

Multi-physics Modelling of Moisture Related Shrinkage in Concrete (콘크리트 수분관련 수축에 관한 다중물리모델)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Water binder ratio combine high-performance concrete shrinkage of less than 0.4 to determine the transformation to a total shrinkage of water to move outside and internal consumption of moisture due to drying shrinkage and autogenous shrinkage, and then, the relative humidity changes and strain to be approached by surface physics describe the relationship between self-desiccation and autogenous shrinkage was set. To verify the self-desiccation in the humidity shrinkage and humidity measurements performed, and the research model, Tazawa, CEB-FIP model than to let the measure and the most similar results in this study based on self-desiccation model, autogenous shrinkage didn't represent the linear shrinkage by the drying shrinkage of the external moving but exponential relationships, unlike with the nature and rapid in the early age properly describes the attributes in shrinkage could see. After this research to move moisture and to reflect the shrinkage model, temperature, moisture transfer, strain analysis by multi-physics model is very similar to the results of mock-up specimen measurements performed for this research, the value measured by the internal consumption of moisture, therefore self-desiccation and a multi-physics model considering autogenous shrinkage might be relevant.

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 자기수축 모델식에 관한 연구)

  • Kang, Su-Tae;Park, Jong-Sup;Joh, Chang-Bin;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.725-728
    • /
    • 2008
  • Most of shrinkage is mainly caused by autogenous shrinkage in Ultra high strength steel-fiber reinforced cementitious composites(UHSFRC). water to binder ratio is very low, about 0.2. It occurs faster hydration and cause a large amount of autogenous shrinkage in early ages. the large autogenous shrinkage can cause harmful cracks in a structure and deteriorate the designed structural performance. therefore it is very important to predict the autogenous shrinkage accurately. The study about the autogenous shrinkage of UHSFRC was carried out in this paper. through comparing with JSCE recommendations for UHSFRC, it was found out that UHSFRC in this study showed higher autogenous shrinkage than that of JSCE. And Applicability of early proposed models by some researchers was also investigated. the analytical results let us know that Miyazawa's model showed the best agreement with the experimentally obtained autogenous shrinkage of UHSFRC.

  • PDF

Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition (콘크리트 강도, 발현 속도 및 양생조건에 따른 자기수축 특성 비교)

  • Yang, Eun-Ik;Shin, Jung-Ho;Choi, Yoon-Suk;Kim, Myung-Yu;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.741-747
    • /
    • 2011
  • In this study, autogenous shrinkage strain and prediction models of concrete specimens were compared with strength level and development rate. Also, concrete autogeneous shrinkage under various curing conditions was investigated. The results showed that autogeneous shrinkage increased as concrete strength increased. However, when the concrete strength was almost identical, the initial autogeneous shrinkage of OPC was larger than BFS, but the final autogeneous shrinkage of BFS was larger than OPC. Early wet curing reduced autogeneous shrinkage strain. Especially, when the early wet curing was applied for more than 24 hours, final autogeneous shrinkage was significantly reduced. The results showed that the existing EC2 models do not reflect concrete properties properly. Therefore, the revised model was proposed to better predict autogeneous shrinkage.

Prediction Model on Autogenous Shrinkage of High Performance Concrete (고성능 콘크리트의 자기수축 예측모델에 관한 연구)

  • Yoo, Sung-Won;Soh, Yang-Sub;Cho, Min-Jung;Koh, Kyung-Taek;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.97-105
    • /
    • 2006
  • The autogenous shrinkage of high-performance concrete is important in that it can lead the early cracks in concrete structures. The purpose of the present study is to explore the autogenous shrinkage of high-performance concrete with admixture and to derive a realistic equation to estimate the autogenous shrinkage model of that. For this purpose, comprehensive experimental program has been set up to observe the autogenous shrinkage for various test series. Major test variables were the type and contents of admixture and water-cement ratio is fixed with 30%. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased the autogenous shrinkage. Also, the autogenous shrinkage of HPC is found to decrease with increasing shrinkage reduction agent and expansive additive. A prediction equation to estimate the autogenous shrinkage of HPC with admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral and chemical admixture.

Autogenous Shrinkage of High Performance Concrete Containing Ply Ash (플라이애시를 함유한 고성능 콘크리트의 자기수축)

  • 이회근;임준영;이광명;김병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2002
  • High performance concrete is prone to large autogenous shrinkage due to its low water to binder ratio (W/B). The autogenous shrinkage of concrete is caused by self-desiccation as a result of water consumption by the hydration of cement. In this study, the autogenous shrinkage of high performance concrete with and without fly ash was Investigated. The properties of fresh concrete, slump loss, air content, and flowability as well as the mechanical properties, compressive strength and modulus of elasticity, were also measured. Test results was shown that the autogenous shrinkage of concrete increased as the W/B decreased. For the same W/B, the autogenous shrinkage of high strength concrete with fly ash was considerably reduced although the development of its compressive strength was delayed at early ages. Furthermore, the autogenous shrinkage and compressive strength of high strength concrete were more rapidly developed than those of normal strength concrete. It was concluded that fly ash could improve the quality of high strength concrete with respect to the workability and autogenous shrinkage.