• Title/Summary/Keyword: 자기부상철도

Search Result 180, Processing Time 0.024 seconds

The Design and Analysis of Recognition Structure for Absolute Train Positioning System of High-speed Maglev Train System (초고속자기부상열차 절대위치검지시스템 인식구조 설계 및 분석)

  • Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho;Lee, Kang-Mi
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.116-120
    • /
    • 2011
  • For the train positioning system currently applied in high-speed MAGLEV train systems, it is classified into absolute positioning systems which discontinuously detect train positions, and relative positioning systems which continuously detect train positions. In this paper we analyze the configuration model and the numerical model of the absolute positioning system applied in TRANSRAPID which is a representative high-speed MAGLEV train, and design the two configuration models specific to the recognition structures of absolute positioning systems. We also verify the compatibility of the design models of absolute positioning system through simulation using MATLAB and propose the optimal configuration model of absolute positioning systems for high-speed MAGLEV train system.

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.