• Title/Summary/Keyword: 자갈 비산

Search Result 16, Processing Time 0.022 seconds

Ballast Flying Probability Analysis for Ballast Types and Underbody Flow Conditions (자갈 종류 및 하부 유동 조건에 따른 자갈비산 확률 분석)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Park, Hoon-Il;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.829-834
    • /
    • 2009
  • A ballast-flying probabilitie is suggested for various ballast types, heighter types and underbody flow conditions as train speeds. The average speed of measured points is converted to the ballast-flying probabilities of BFPF which come from wind tunnel test data. Underbody flow fields are numerically simulated for the various conditions. The results show that the ballast-flying probability is steeply increased as train speed increased, and reaches a value of 87% at 350 km/h train speed. And the differences of probabilities among the ballast shapes are considerably high. The upper surface of heighter or tie is most probable area. Through this study, the ballast-flying Sensitivities with heighter was defined to understand the characteristics of ballast-flying probability on various conditions. And the ballast-flying probability can be reduced by the heighter.

Aerodynamic Characteristics of Heighter Shapes for a Tract Gust Reduction (선로상 돌풍 감소를 위한 높임침목형상의 공력특성 평가)

  • Rho, Joo-Hyhn;Kim, Jong-Yong;Ku, Yo-Cheon;Yun, Su-Hwan;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • The ballast-flying, induced by strong underbody flow of high-speed train, can damage train underbody, wheel and even cause the safety problems. For this reason, a heighter is being used to prevent ballast-flying through underbody flow reduction. In this research, flow field around a heighter is numerically simulated.. And the parametric study of various heighter geometries is performed to find out more effective heighter shape. Through these numerical studies, the relation between the heighter shape and underbody flow is found out. Also new heighter shapes are numerically investigated and their performances of underbody flow reduction are verified.

Evaluation of Impact Damage and Residual Compression Strength after Impact of Glass/Epoxy Laminate Composites for Lightweight Bogie Frame induced by Ballast-Flying Phenomena (도상자갈 비산에 의한 경량 대차프레임 적용 유리/에폭시 적층 복합재의 충격손상 및 충격 후 잔류압축강도 평가)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Kim, Jung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • In order to evaluate the effect of structural degradation of a GFRP composite bogie frame due to ballast-flying phenomena, the impact test and residual compression test after impact was conducted for glass fiber/epoxy 4-harness satin woven laminate composites applied to skin part of a bogie frame. The impact test was performed using a instrumented impact testing system with energy levels of 5J, 10J, and 20J, and the impactor was designed to have various ballast shapes such as sphere, cube, and cone to consider the ballasted track environments. The residual compression strength was tested to evaluate the degradation of mechanical properties of impact-damaged laminate composites. The results showed that the damage area and the degradation of residual compressive strength after impact for laminate composites was increased with increase of impact energy for all ballast shapes, and was particularly most influenced by ballast shape of cone.

Numerical Study of Heighter for Prevention of Ballast-flying under High Speed Train (고속열차의 하부 자갈비산 방지용 하이터의 수치적 연구)

  • Kim Byeong-Yeol;Kwon Hyeok-Bin;Kim Jong-Yong;Kim Tae-Yoon;Lee Dong-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.104-108
    • /
    • 2005
  • The Korean high speed train runs at 300 km/h, ballast-flying phenomenon often happens by strong train-wind. It is important to consider the prevention of ballast-flying phenomenon, because the train under-body and fares or walker around a rail might be damaged. In this study, Numerical analysis of the flow field of under-body of train and study of heighter-effect were conducted to decrease the speed of under-body. The shape of under-body was simplified for convenience of meshing and analysis. According to results of Taguchi's design by orthogonal arrays, a height of tie is dominant in the flow field, so if the heighter is installed on tie, the speed of under-body might be decreased. The result of this study is useful to build a new high-speed-line.

  • PDF

A Study on the Ballast-flying Phenomena by Strong Wind Induced by High-speed Train (열차풍에 의한 고속선 자갈비산현상 연구)

  • Kwon Hyeok-Bin;Park Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 2005
  • The mechanism of ballast-flying phenomena by strong wind induced by high-speed trains has extensively been investigated by conducting wind tunnel test and field-measuring of wind velocity in the vicinity of the track. The ballast gathered from the Seoul-Busan high-speed railway track has been classified by mass and shape to find relationship between those properties and the characteristic of movement in high wind and 16-channel Kiel-probe array has been used to examine the detailed flow structure above the surface of the track. The probability of ballast-flying during the passage of the high-speed train has been assessed comparing the results from wind tunnel test and that from field-measuring. The results shows that when the G7 train runs well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability far small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore radical countermeasure seems to be needed.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Track Measurements of Strong Wind under High-speed Train to Investigate Ballast-flying Mechanism (자갈비산 메커니즘 연구를 위한 고속철도차량 하부유동 계측)

  • Kwon H.B.;Park C.S.;Nam S.W.;Ko T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.369-373
    • /
    • 2005
  • To investigate the mechanism of ballast-flying phenomena by strong wind induced by high-speed trains, wind velocity in the vicinity of the track has been measured using 16-channel Kiel-probe array and detailed flow structure near the surface of the track has been analyzed. The position at which the underflow fully develop has been examined in order to assess the driving force of the turbulent flow under train and the results yields that the turbulent flow owing to the cavity of the inter-car as well as the friction force at the underbody of the train is the main reason of the strong wind under high-speed train. The preceding wind tunnel test results has been introduced to assess the probability of ballast-flying during the passage of the high-speed train by comparing the results from field-measuring. The results shows that when the G7 train as well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability for small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore more radical countermeasure seems to be needed.

  • PDF

Evaluation of Low Velocity Impact Damage and Compressive Strength After Impact for Laminate Composites Applied to Lightweight Bogie Frame Induced by Flying Railway Ballast (도상자갈 비산에 의한 경량 대차프레임 적용 적층 복합재의 저속충격 손상 및 충격 후 압축 강도 평가)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2661-2665
    • /
    • 2011
  • In order to evaluate the structural integrity of a GFRP composite bogie frame due to flying railway ballast, the low velocity impact test and compressive test after impact was conducted for glass fiber/epoxy 4-harness satin woven laminate composites applied to skin part of a bogie frame. The impact test was performed using a instrumented impact testing system with energy levels of 5J, 10J and 20J and the designed impactor based on typical railway ballast shapes such as sphere, cube and cone to simulate the ballasted track environments. The compressive strength was tested to according to ASTM D7137 to evaluate the degradation of mechanical property of impact damaged laminate composites. The results showed that the damage area and the degradation of compressive strength after impact for laminate composites was increased with increase in impact energy for all ballast shapes and was particularly most influenced by cone ballast shape.

  • PDF

Research on Countermeasures for Ballast-Flying Phenomenon by Accreted Snow/Ice from High-speed trains (고속철도 설빙낙하에 의한 자갈비산 방지대책 연구)

  • Kwon Hyeok-Bin;Nam Seong-Won;Kim Dae-Sang;Lee Il-Wha;Han Jin-Seok
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.229-234
    • /
    • 2004
  • When trains run over a snow-covered track at high speed, the snow accereted under car bodies may drop during train running. The dropped snow lumps scatter the ballast on the track damaging the car body and the environment along the track in snowy regions. In this study, various countermeasures to prevent the ballast from scattering has been investigated and compared. Furthermore, the implementation of the ballast-flying prevention methods to passing-by station has been examined through which the KTX train passes about 300km/h speed.

  • PDF