• Title/Summary/Keyword: 자갈궤도

Search Result 107, Processing Time 0.03 seconds

Field Model Tests on Frost Penetration Depths and Frost Heave Amounts in Ballast track and Concrete track (현장모형실험을 통한 자갈궤도와 콘크리트궤도의 동결심도 및 동상량 측정)

  • Kim, Young-Chin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.506-514
    • /
    • 2016
  • Experimental ballast track and concrete track were installed on the railway site and the frost penetration depth and the frost heave amount in the winter were measured. As a result, when the freezing index was the same, the frost penetration depth of concrete track was deeper than that of ballast track. Furthermore, when an XPS and polyethylene aggregate layer was installed below the ballast track, the frost penetration depth of the ballast track decreased significantly; in the case of the concrete track, the frost penetration depth decreased when the thickness of the subbase increased. Meanwhile, the frost heave amount also decreased when an XPS and polyethylene aggregate layer was installed below the ballast track ; in the case of the concrete track, the frost heave amount decreased when the thickness of the subbase increased.

A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading (자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교)

  • Choi, Chan-Yong;Lee, Sung-Heok;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • The track systems installed in Korea railway consist of two types on ballasted track or ballastless track. In this study, it was compared with difference of the behaviors at roadbed with cyclic loading through full scale model test. From the results of model tests, loading distribution ratio of the concrete slab track become more widely distributed than ballasted track, and loading distribution ratio at concrete track was about 30:20:15. The concrete slab track is likely to behavior of the rigid plate, while ballasted track is such as flexible pavement. The vertical stresses of upper roadbed with traffic cyclic loading in concrete track were measured about 30 kPa or less. It was a scene very similar to the results of the field train running test. The vertical stress at concrete track was occurred approximately 4 times smaller than ballasted track. Also, the soil velocities with cyclic loading at the slab track were occurred about 0.3 cm/sec or less, its 8 times smaller than ballasted track.

  • PDF

A Study on Effect of Vibration Reduction with Ballast Mat of Ballasted Track in Tunnel (터널내 자갈도상제도의 자갈도상매트 시공 후 진동 저감 효과에 대한 연구)

  • You, Chung-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.167-174
    • /
    • 2009
  • Due to the travelling of the train with high speed the period of maintenance activities of the ballasted track is coming to be short, and more from the residential area of the ballasted track tunnel circumference the civil appeal is increasing with railroad vibration problem. To reduce the vibration problem and a maintenance cost establishes the ballast mat in the tunnel within part segment. In this study, to estimate the vibration reduction effect of the ballast mat we have done a comparative analysis with the vibration field test by the transit train by at the ballasted track with ballast mat and the standard ballasted track without vibration protection in tunnel.

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway (철도 궤도의 수명주기비용 분석 : 고속철도 자갈궤도와 콘크리트궤도 사례 연구)

  • Jang, Seung Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.110-121
    • /
    • 2016
  • In the decision-making, such as selection of structure, construction method, or time and scheme of maintenance, the evaluation of life-cycle cost(LCC) is of great importance. The maintenance cost occupy a large portion of the LCC of the railway track as well as the initial construction cost. Futhermore, the proportion of the maintenance cost is much higher in the ballasted track. Thus, the importance of the LCC evaluation is higher than in any other engineering structures. In this study, a LCC model that can consider various design parameters such as the type of track structure, annual traffic volume, axle load, train speed, and proportion of curve sections and engineering structures has been developed. Fundamental data for calculating costs also have been presented. Based on the model and data proposed, the trends in the variation of LCC according to the design parameters were examined and the most important design parameters in the LCC analysis of railway track were investigated. The results show that the proportion of renewal and operational costs is much higher in the ballasted track than in the concrete track, and the annual traffic volume and ballast taming period are most significant factors on the LCC of the ballasted track. On the contrary, it is revealed that the proportion of the initial construction costs in the concrete track is much higher, and the LCC of the concrete track is less sensitive to the traffic volume, train speed, and axle load.

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

The Evaluation of Track Impact Factor on the Various Track Type in Urban Transit (도시철도 궤도구조별 궤도충격계수 평가)

  • Choi, Jung-Youl;Park, Yong-Gul;Lee, Sang-Min
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.248-255
    • /
    • 2011
  • Impact factor of concrete and ballast track which has been used in Korea railway was applied to equation (1+0.513V/100) from AREA. As the use of this equation, overcapacity of track design might be occurred. Therefore, this study compared impact of ballast track (well, bad) and concrete track (sleeper embeded system, rail floating and sleeper floating) by field test to analyzing dynamic effect of track structure's characterstic and wheel load on service line. In addition, it suggested a method to generate reasonable impact factor on each track type.

An Estimate of Ballast Track Condition on Dynamic Behavior of Railway Bridge (철도교량의 동적거동 특성을 고려한 자갈도상궤도의 상태추정에 관한 연구)

  • Kweon, Oh-Soon;Choi, Jung-Youl;Kang, Myoung-Seok;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.480-493
    • /
    • 2007
  • Many railway-advanced countries are using the various types of track to reduce the track maintenance and repair cost according to the improvement of velocity. It spends on much maintenance and repair cost for ballast track due to abrasion of ballast, track irregularity and unisotropical ballast-support stiffness. The ballast track on railway bridge is accelerating the deterioration of ballast according to interaction of railway bridge and track. As continuing the deterioration, it is caused dynamic loads. Due to these effects, it increases negative loads of track and bridge. However, when designing the railway bridge, the effect of ballast track was applicate only dead load, so elastic behavior effect of ballast track is not influenced. Therefore, this paper presumes the stiffness of ballast track on railway bridge considering dynamic behavior of railway bridge, it was evaluated that effect on dynamic behaviors of railway bridge according to ballast track stiffness.

  • PDF

Evaluation of the Optimal Vertical Stiffness of a Fastener Along a High-speed Ballast Track (고속철도 자갈궤도 체결구 최적 수직강성 평가)

  • Yang, Sin-Choo;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.

The Experimental Study on the Effect of Track System on the Integral Behavior of Railway Bridge (궤도시스템이 철도교량의 정.동적거동에 미치는 영향에 관한 실험적 연구)

  • Sung, Deok-Yong;Park, Yong-Gul;Choi, Jung-Youl;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • Track system and periodic live load are characteristics of railway bridges. In the design and construction of railway bridge, periodic live load increases the importance of dynamic behavior. And It is well known that behavior of railway bridge may be affected by track system in real bridge. Through experimental study, static and dynamic behaviors were investigated. Deflection and stress due to bending moment were measured, the location of neutral axis of each section, natural frequency, damping ratio were analyzed for each three track systems - girder only, installed ballast track system and installed concrete slab track system. According to measured values for the each type of track system, concrete track system increases the stiffness of bridge by 50%, and ballast system does by 7%, dynamic responses of structure change linearly with the magnitude of load and location of neutral axis of each sections varies with each track system. Damping ratio is almost equal without and with track. Therefore, the effects of track system on the integral behaviors of railway bridge can not be ignored in the design of bridge, especially in the case of concrete slab track system. So study of the quantitative analysis method for effects of track system must be performed.