• 제목/요약/키워드: 입자 치료

Search Result 139, Processing Time 0.177 seconds

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.

Antitumor agents bound to silica nanoparticles: potential technology for the remediation of malignant tumors (실리카 나노 입자에 결합된 항종양제: 악성종양 치료를 위한 새로운 치료 방법)

  • Lee, Young-Hwan;Lee, Jung-Ok;Chun, Kyung-Soo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • Commercially widely used antitumor agents such as hydroxy urea, 6-mercaptopurine monohydrate, cytosine arabinoside, cyclophosphamide monohydrate and uracil were reacted with 3-(triethoxysilyl)propyl isocyanate and the product hydrolyzed to give silica nanoparticles bound antitumor agents ranging from 10 nm to micron-sized aggregates. The silyl isocyanate derivative was also reacted neat with water to give hybrid organicsilicananoparticles containing $-CH_2-CH_2-CH_2-NH-COOH$ or the corresponding decarboxylated propylamine groups depending on solvent and temperature employed. In vitro tests these functionalized silica nanoparticles were effective in the treatment of malignant tumor cells but had little or no effect on normal cells. Malignant human lung, ovarian, melanoma, CNS(Central nervous system) and colon tumor cells were used in this research. The use of silica as a carrier medium in the present research serves as a model material due to its ready functionalization via silation. The proof of concept established by the results suggests that the technique may be applied to other, more biocompatible carrier nanoparticles.

Development of Hydrogel Containing Catechin for Wound Dressing (카테킨이 함유된 창상피복제용 하이드로젤의 개발)

  • Kim, Jin;Cho, Eun Bi;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 2013
  • Catechin (CTEC) is well-known as a very powerful antioxidant, containing the effects of anti-inflammation and skin wound healing. In this study, CTEC/${\beta}$-cyclodextrin (${\beta}$-CD) nanoparticles were incorporated into poly(vinyl alcohol) (PVA)/pectin (PT) hydrogel. The composite was designed for the induction of re-epithelializaton in skin wound. CTEC/${\beta}$-CD nanoparticles were prepared by a molecular complex method. The size of the CTEC nanoparticles formed in the hydrogel was in the range of $250{\pm}17.5$ nm. The incorporation efficiency of CTEC in the nanoparticles was 74%. The cumulative amounts of CTEC released from the hydrogel containing CTEC nanoparticles in the buffers of pH7.4 and 5.5 were $86.51{\pm}3.14%$ and $35.95{\pm}2.14%$ of total CTEC loaded in the hydrogel within 72 h, respectively. Also, in the wound healing test, the CTEC nanoparticles-loaded PVA/PT hydrogel showed faster healing of the wound made in rat dorsum than the CTEC gel.

Recent Research Trend in Biomaterials for Effective Cancer Immunotherapy (효과적인 암 면역치료를 위한 생체재료 연구동향)

  • Han, Jun-Hyeok;Go, Eun-Jin;Kim, Joon-Kyu;Park, Wooram
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.6
    • /
    • pp.2-12
    • /
    • 2019
  • 최근 암 면역치료는 임상연구에서 긍정적인 결과를 보이고 있으며 암 질환의 표준치료법으로 자리 잡아가고 있다. 암 면역치료는 암의 재발과 전이를 획기적으로 개선시킬 수 있다는 이점이 있다. 하지만 전체 암 환자의 15~20%에서만 치료 효과를 보이고 심각한 부작용을 유발할 수 있다는 임상적 한계가 있다. 이러한 문제점들을 개선하기 위해서 기존에 약물전달 또는 조직공학 분야에서 활용되었던 생체재료를 도입하여 면역치료의 효과를 개선하고 부작용은 줄이려는 시도가 활발하다. 본 기고문에서는 효율적인 암 면역치료를 위한 생체재료(나노입자, 리포좀, 미립구, 및 하이드로젤)에 관한 최신 연구동향을 다루고자 한다. 고기능성 생체재료 개발과 종양 면역학 분야의 깊은 이해는 효과적인 암 면역치료제를 개발하는데 있어서 매우 중요하다.

Detection of Torovirus-like particles from calves with diarrhea (송아지 설사 분변에서 Torovirus 검출)

  • Lyoo, Young Soo
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.155-159
    • /
    • 1997
  • Torovirus-like particles이 심급성의 설사로 폐사한 송아지의 분변으로 부터 검출되었다. 설사로 폐사한 송아지는 2주령으로 설사증상을 보인 5두중 2두였으며 심한 설사증상을 보인지 24시간만에 급성폐사를 나타내었다. 나머지 3두도 심한 설사증상을 보였으나 항생제 및 수액요법으로 치료를 한 후 회복되었다. 전자현미경으로 관찰된 바아러스 입자는 Woode et al이 관찰한 Torovirus 입자와 동일하였으며 그 크기는 원형입자일 경우 70~90nm의 크기로 8~10nm의 Peplomer를 가지고 있었다. 그러나 바이러스이 입자형태는 소, 돼지 그리고 사람에서 보고된 Torovirus와 마찬가지로 다양하였으며 Tube 형태로 된 것은 길이가 약 150nm에 달하기도 했다. 이 보고는 국내에서의 송아지 Torovirus 감염증의 첫 보고이며 국내에서도 Torovirus가 존재한다는 것을 입증한 것이다.

  • PDF

Theoretical Background on Heavy Charged Particle Therapy and Proton Monte Carlo Simulation (중하전입자 치료의 이론적 배경과 양성자에 대한 몬테칼로 시뮬레이션)

  • 이정옥;이상공;김종일;정동혁;문성록;강정구
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • Simulations were performed using a Monte Carlo technique in order to show physical phenomena occurring when a heavy charged particle such as proton or alpha particle traverses the medium. It was confirmed that the sharp Bragg peak occurred deeper in the water with the increasing proton energy. It is found that the use of such a sharp Bragg peak due to heavy charged particles would be far superior to the case of the photon or electron, since the absorbed dose in the target tissues would be better localized, thereby minimizing the damage to the surrounding tissues.

  • PDF

비침투식, 선택적 암세포 제거를 위한 나노 물질의 유도 결합 고주파 가열에 관한 연구

  • Lee, Hyo-Chang;Lee, Jeong-Gyu;O, Seung-Ju;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.104-104
    • /
    • 2010
  • 최근 나노 입자가 항체와 호환이 가능하다는 연구가 진행됨에 따라, 외부에서 나노 입자를 비침투식으로 가열할 수 있다면 암세포만을 선택적으로 치료할 수 있기에, 본 연구는 유도결합 고주파 가열 메커니즘을 이용하여 암세포를 제거할 수 있는 새로운 방법에 관한 내용을 다루고 있다. 13.56 MHz의 고주파를 인가하였으며, 카본나노튜브 용액을 유도 결합 고주파 가열시킨 후 용액의 온도 상승 값을 측정하였다. 또한, 인체와 호환이 가능하도록 제조된 특수용액을 이용하여 유도 결합 고주파 가열 실험을 하였으며, 그에 따른 온도 증가를 측정하였다. 용액의 온도는 농도가 짙고, 고주파 전력이 높으며, 그리고 인가 시간이 길수록 온도 상승이 급격해짐이 관찰되었으며, 이러한 온도 상승은 유도 가열에 의한 에너지 전달이 효과적임을 나타낸다. 따라서 이 유도 결합 고주파 가열법은 비침투식, 선택적 암세포 치료에 적용이 가능할 것으로 예상된다.

  • PDF

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF