• Title/Summary/Keyword: 입자 강화 복합재

Search Result 73, Processing Time 0.024 seconds

A Study on Effective Thermal Conductivity of Particulate Reinforced Composite (입자 강화 복합재의 등가 열전도 계수에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • Effective thermal conductivity of particulate reinforced composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory. The predicted results are compared with the experimental results from the literature. The model composite is polymer matrix filled with ceramic particles such as silica, alumina, and aluminum nitride. The preliminary examination by Eshelby type model shows that the predicted results are in good agreements with the experimental results for the composite with perfect spherical filler. As the shape of filler deviates from the perfect sphere, the predicted error increases. By using the aspect ratio of the filler deduced from the fixed filler volume fraction of 30%, the predicted results coincide well with the experimental results for filler volume fraction of 40% or less. Beyond this fraction, the predicted error increases rapidly. It can be finally concluded from the study that Eshelby type model can be applied to predict the thermal conductivity of the particulate composite with filler volume fraction less than 40%.

  • PDF

Evaluation of Crack Resistance Properties on Particulate Reinforced Composite Propellant using Digital Image Correlation (DIC에 의한 입자강화 복합재 추진제의 균열저항 특성평가)

  • Na, Seonghyeon;Choi, Hoonseok;Oh, Kwangkeun;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.26-32
    • /
    • 2015
  • In this study, it is evaluated for fracture toughness to analyze crack resistance properties of particulate reinforced composite propellant. Fracture toughness test using WST specimen is conducted by temperature conditions from $50^{\circ}C$ to $-60^{\circ}C$. Evaluation method for fracture toughness calculated using an equation suggested by ASTM E399 with linear elastic fracture mechanics. From these result, splitting loads and stress intensity factors of propellant increase according to decrease of test temperature. Also, the strain fields of specimen surface using digital image correlation increase as temperature decreased from $50^{\circ}C$ to $-40^{\circ}C$, but it sharply decreases at $-60^{\circ}C$ because of brittle behavior.

A Study on the Elastoplastic Behavior and Yield Surface of Polymer Nanocomposites by Molecular Dynamics Simulations (분자동역학 전산모사를 이용한 나노입자 복합재의 탄소성 거동과 항복 예측에 관한 연구)

  • Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.558-561
    • /
    • 2010
  • 본 연구에서는 나노복합재의 탄소성 거동과 항복응력을 예측하기 위해 분자동역학 전산모사를 수행하였다. 나일론 기지와 실리카 나노입자가 포함된 단위 셀 구조로부터 나노입자의 체적분율 변화에 따른 응력-변형률 선도를 등변형률을 적용한 등온등압 앙상블 전산모사로부터 도출하였다. 4%의 변형률 범위에서 나노복합재의 탄성계수를 도출하였고, 이를 이용하여 2% 오프셋 방법으로 항복응력을 예측하였다. 나노입자의 유무에 따른 항복평면의 변화와 고분자 재료에서 나타나는 정수압 효과가 항복평면에 미치는 영향을 확인하기 위해 일축 인장/압축 그리고 이축 인장/압축을 수행하였고, 각각의 경우에 나타나는 나노복합재 내부의 자유체적 변화에 대한 분석을 통해 나노입자의 강화효과를 고찰하였다. 또한 고분자 기지로 인해 발생하는 정수압 효과를 반영한 von-Miss 항복평면을 도출하고, 입자의 체적분율 변화에 따른 항복응력의 예측이 가능하도록 정수압효과에 대한 파라메터를 체적분율의 함수로 근사하였다.

  • PDF

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Mechanical Properties of Paper Sludge-Polypropylene Composites (제지 슬러지-폴리프로필렌수지 복합재의 기계적 성질)

  • Lee, Phil-Woo;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.51-62
    • /
    • 1999
  • The objective of this research is to develop paper sludge reinforced thermoplastic composites which incorporate the advantages of each component materials. The effects of paper sludge content(0, 10, 20, 30, 40----), mesh size(20~40, 60~80, less than 100mesh), and coupling agent(Epolene E-43 and Epolene G-3003) on the mechanical properties of paper sludge-polypropylene composites were investigated. Composite density increased with an increase in the paper sludge content. When paper sludge is incorporated into a polypropylene matrix, the flexural properties of the composite increase significantly with an increase in the paper sludge mixing ratio. Especially, flexural modulus was improved with increasing paper sludge content. The flexural strength of composites was improved, but flexural modulus reduced somewhat with decreasing paper sludge particle size. The flexural properties of paper sludge-polypropylene composites were improved by using coupling agents to enhance the bonding between reinforcing filler and matrix. Use of the epolene E-43 and G-3003 resulted in considerable improvement in the flexural strength over control specimens. The flexural strength of the G-3003 composite system is higher than that of the E-43 system. Generally, izod notched impact strength of paper sludge-polypropylene composite decreased slightly, whereas izod unnotched impact strength decreased significantly with increasing paper sludge contents. There was no effects of paper sludge particle size on impact strength of paper sludge-polypropylene composites. And izod unnotched impact strength of epolene E-43 composite system sharply decreased but that of G-3003 composite system was no tendency with increasing additive content.

  • PDF

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement (Capacitance 측정법을 이용한 나노 SiC 에폭시 복합재료의 내부 강화재 분산 예측방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.337-342
    • /
    • 2013
  • The good dispersion of nano-materials in epoxy matrix was important parameter for the reinforcement effect, and the evaluation of dispersion degree was to prove it. This work was studied to predict the dispersion condition of nano-SiC powders in SiC/epoxy composites using capacitance measurement. Capacitance was defined to be the electric capacity in proportional to electron charge of the measuring section. In case of nano-SiC powders, the electron charge of SiC/epoxy composites was higher than that of neat epoxy resin. Capacitance was evaluated for each section of SiC/epoxy composites. The prediction of dispersion condition was verified by using capacitance measurement. Dispersion condition of nano-SiC powders in epoxy matrix was evaluated with two different dispersion methods, i.e., sonication and stirring methods. The dispersion degree was also verified with the tensile strength correlating to capacitance.

Reheating Process of Metal Matrix Composite for Thixoforming (Thixoforming을 위한 금속복합재료의 재가열 공정)

  • 안성수;강충길;조형호
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.19-32
    • /
    • 2000
  • The fabrication process of particulate metal matrix composites(PMMCs) with homogeneous distribution of reinforcement and reheating for thixoforming has been studied. Both of eletro-magnetic stirring and mechanical stirring were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The electrical and mechanical processing conditions for fabricating PMMCs are also suggested. For thixoforming of PMMCs, fabricated bi1lets are reheated by using the designed optimal coil with as function of length between PMMC billet and coil surface, and coil diameter and billet. The effect of reinforcement distribution according to variation of billet temperature were investigated with solid fraction theory with a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Development of a Prediction Model for the Mechanical Properties of Polypropylene Composites Reinforced by Talc and Short Glass Fibers (탈크 및 유리단섬유로 강화된 폴리프로필렌 복합재료의 기계적 물성 예측 모델 개발)

  • Kim, Soon;Son, Dongil;Choi, Donghyuk;Jeong, Inchan;Park, Young-Bin;Kim, Sung Youb
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • In this paper, we developed a theoretical model which is able to predict the tensile strength and elastic modulus of hybrid composites reinforced by two types of randomly distributed discontinuous reinforcements. For this, we considered two known models; One is a prediction model based on the assumption that the composite is reinforced by two types of well aligned continuous reinforcements. The other is a statistical model for the composite which is reinforced by only one type of randomly distributed discontinuous reinforcements. In order to evaluate the validity of accuracy of our prediction model, we measured the strength and elastic modulus of polypropylene hybrid composite reinforced by talc and short glass fiber. We found that the present model drastically enhances the accuracy of strength prediction compared to an existing model, and predicts the elastic modulus within the same order with experimentally measured values.