• Title/Summary/Keyword: 입자 강화 복합재료

Search Result 148, Processing Time 0.022 seconds

A study on the Mechanical Properties of $Al_2O_{3(p)}$/LXA Composites by Melt-stirring Method (용탕교반법에 의한 $Al_2O_{3(p)}$/LXA복합재료의 기계적 성질에 관한 연구)

  • 이현규;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • Casting of metal matrix composites is an attractive process since it offers a wide selection of materials and processing conditions. Among the casting methods, melt-stirring technology is much attractive route in industrial application because it is more simple and inexpensive compared to squeeze casting or powder metallurgy. In the present work, effects of particle size, volume fraction of particles and mg addition on mechanical properties and thermal expansion coefficients of $\alpha$ -$Al_2O_{3(p)}$/LXA composites were studied. It is shown that $\alpha$ -$Al_2O_3$ particles formed at the interface of $\alpha$ -$Al_2O_3$ particles and matrix made an important role on mechanical properties. Ultimate tensile strength of most composite materials was not increased. But in the case of 5vol% addition of 16$\mu\textrm{m}$ $\alpha$ -$Al_2O_3$ Particle, Ultimate tensile strength of composite materials with 3wt.% Mg was increased. Volume fraction of reinforcements and mg content were thermal expansion coefficients of composite materials were decreased.

  • PDF

Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation (DIC를 이용한 입자강화 복합재료의 파괴거동 평가)

  • Hong, Sang-Hyun;Lee, Jeong-Won;Kim, Jae-Hoon;Lee, Sang-Yeon;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.535-541
    • /
    • 2018
  • In this study, wedge splitting tests were performed to evaluate fracture behavior of particle reinforced composite materials. Crack resistance was evaluated by using CTOD (crack tip opening displacement) and crack tip opening angle (CTOA). The particle reinforced composites were tested under various temperature ($-60^{\circ}C{\sim}50^{\circ}C$) and load speed (5~500mm/min). Also, digital image correlation method (DIC) was used to analyze the strain field at crack tip. Test results showed that the fracture energy increased with decreasing temperature and crack resistance increased with increasing load velocity.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 초음파법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 1998
  • A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix ($SiC_p/Al$) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions.

  • PDF

A Study on Tensile Properties of Laminated Nanocomposite Fabricated by Selective Dip-Coating of Carbon Nanotubes (탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의 인장 물성에 대한 연구)

  • Kang Tae-June;Kim Dong-Iel;Huh Yong-Hak;Kim Yong-Hyup
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • Carbon nanotubes reinforced copper matrix laminated nanocomposites were developed and the mechanical properties were evaluated by using micro-tensile testing system. Sandwich-type laminated structure constituted with carbon nanotube layers as a reinforcement and electroplated copper matrix were fabricated by a new processing approach based on selective dip-coating of carbon nanotubes. The mechanical properties of nanocomposites were improved due to an enhanced load sharing capacity of carbon nanotubes homogeneously distributed within the in-plane direction, as well as a bridging effect of carbon nanotubes along the out-of-plane direction between the upper and lower matrices. The universality of the layering approach is applicable to a wide range of functional materials, and here we demonstrate its potential use in reinforcing composite materials.

CNT and CNF reinforced carbon fiber hybrid composites by electrophoresis deposition (전기영동법에 의한 탄소나노튜브 및 탄소나노섬유 강화 탄소섬유 하이브리드 복합재료)

  • Choi, O-Young;Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Kim, Jin-Bong;Choe, Hyeon-Seong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In order to increase the electrical conductivity and the mechanical properties of carbon fabric composites, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were deposited on carbon fabrics by anodic and cathodic electrophoretic deposition (EPD) processes. In the cathodic EPD, carbon nano-particles and nano-sized Cu particles were simultaneously deposited on the carbon fabric, which gave a synergetic effect on the enhancement of properties as well as the degree of deposition. The hybridization of carbon nano-particles and micron-sized carbon fiber significantly improved the through-the-thickness electrical conductivity. In addition, both MWCNTs and CNFs were deposited onto the carbon fabric for multi-scale hybrid composites. Multi-scale deposition improved the through-the-thickness electrical conductivity, compared to the deposition of either MWCNTs or CNFs.

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process (자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구)

  • Lee, Eunkyung;Jo, Ilguk
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.256-261
    • /
    • 2020
  • In this study, the ignition temperature of the Al-Ti-C reaction system, the microstructure and the mechanical properties of the TiC/Mg composite which produced by the self-propagating high-temperature synthesis (SHS) followed by stir casting process were investigated. Mg based composite with uniformly dispersed 0, 10, 20, and 30 vol.% TiC were fabricated, and higher volume fraction of TiC reinforced composite showed superior compressive strength and wear resistance as compared with Mg matrix. It is attributed to the less contamination, defects, impurities in TiC/Mg composite by the in-situ SHS yield effective load transfer from the matrix to the reinforcement.

Effect to Material Strength Recovery of Stepped Patch Repair with Epoxy based Particle Reinforced GFRP Composites under Hygrothermal Environment (에폭시 기지 입자 강화 GFRP를 사용한 계단형 패치 보수법이 고온 고습 환경하에서 재료의 물성 회복에 미치는 영향)

  • Jung, Kyung-Seok;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.88-93
    • /
    • 2018
  • In this study, damaged composite laminates were repaired by a stepped patch repair method using halloysite nanotube(HNT) and milled carbon(MC) reinforced composite materials with different amount of the particles. And the mechanical and structural effects of the particles on the interface between the damaged and repair surfaces were analyzed. At this time, after exposing them to a harsh environment of high temperature and humidity for a long time, the recovery rate of the material properties relative to the material forming the damaged plate was compared. As a result, at $70^{\circ}C$ high temperature distilled water, the hygroscopicity of the HNT/GFRP composites was significantly different from that of the MC/GFRP composites. Especially, 0.5, 1 wt. % HNT was added, the moisture absorption rate was the lowest and this was the factor that contributed to the mechanical strength increase. On the other hand, MC showed a high hygroscopic resistance only with a small amount, and the strength was different according to the action direction of the load, and the addition amount was also different.

Fabrication of Ceramic Particulate Reinforced Steel Composites by Liquid Pressing Infiltration Process (용융가압함침공정을 이용한 세라믹 입자 강화 철강복합재료의 제조성 검증)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeon Jae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • Various ceramic particulate such as TiC, $TiB_2$, $Al_2O_3$ reinforced SUS431 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructures of the SUS431 composite were analyzed to determine manufacturability of composites. $Al_2O_3$-SUS431 composite had lots of defects due to poor wettability between the $Al_2O_3$ and steel matrix. On the other hand, TiC was uniformly dispersed in the SUS431 matrix than $TiB_2$ and $Al_2O_3$ due to good wettability and interfacial properties.

A Study on the Fabrication of Al/TiCp Composites by Liquid Mixing method(I) (액상교반법에 의한 AI/TiCp 복합재료의 제조에 관한 연구(I))

  • Im, Jong-Guk;Kim, Myeong-Han;Choe, Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.529-537
    • /
    • 1993
  • The mecllanical properties of AI/TiCp composite fabrication by liquid mixing was investigat ed. The composites, containing 10 wt% Tic. were producwi using induction furnace with mechanical stirring. The amounts of' 1.5wt% Mg were, added to wetting agents. Thr presence of aluminum in TiC composites showed rnhanced strengrh without loss of ductility at room and clrvated temperatures. Espe cially, wear resistance was found to dramatically irnprovc. I3ul excess stirring d~terrninrd the mect~ani~ cal properties. Approximate values at present work were 500 rpm. There was no inrerfacial reaction of any kind and the interface remains clearly deineated.

  • PDF