• Title/Summary/Keyword: 입자파쇄

Search Result 133, Processing Time 0.029 seconds

Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC (PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개)

  • Jo, Seon-Ah;Cho, Gye-Chun;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.41-53
    • /
    • 2009
  • In order to analyze the influence of particle shape on evolution of particle crushing and characteristic of shear behavior of granular soil, direct shear test was simulated by using DEM (Discrete Element Method). Six particle shapes were generated by clump and cluster model built in PFC (Particle Flow Code). The results of direct shear test for six particle shapes were compared and analyzed with those for circular particle shape. The results of numerical tests showed a good agreement with those of experimental tests, thus the appropriateness of numerical modelling set in this study was proved. As for particle shape, more angular and rougher particle induced larger internal friction angle and more particle crushing than relatively round and smooth particle. When particles were crushed, crushing was concentrated on the shear band adjacent to the shear plane. Finally, it can be concluded that the numerical models suggested in this study can be used extensively for other studies concerning the shear behavior of granular soil including soil crushing.

A Change of Porewater Pressure under Particle Crushing of Carbonate Sand of Sabkha Layer (Sabkha층 탄산질 모래의 입자파쇄에 따른 간극수압 변화)

  • Kim, Seok-Ju;Yi, Chang-Tok;Ji, Won-Baek;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.19-32
    • /
    • 2014
  • Carbonate sand of Sabkha layer in the middle east was made of deposition of shell fragments and it consisted of porous particles containing inner void. Generally, at yield stress the soil structure begins to break down, so the porewater pressure and the settlement are increased rapidly. In carbonate sand, unlike quartz sand if particle crushing happens, the inner voids are exposed and porewater pressure can be decreased under yield stress. Porewater pressure can be determined as the sum of excess porewater pressure due to increase of relative density, inner void expose of particle under particle crushing stress and rearrangement of crushed particle fragments. The porewater pressure can be negative value in case of greater amount of inner void expose, so if particle crushing is bigger, the porewater pressure value is smaller. The negative value zone of porewater pressure from triaxial test result means particle crushing effect is bigger than outer void decrease effect and the particle crushing effect dominant zone size was 1.50∼3.46% from triaxial test result of Sabkha layer.

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.

Fractals and Fragmentation of Survivor Grains within Gouge Zones along Boundary Faults in the Tertiary Waeup Basin (제3기 와읍분지 경계단층을 따라 발달하는 단층비지 내 잔류입자의 프랙탈과 파쇄작용)

  • Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • Fault gouge samples were collected from the fault cores of the boundary faults between the Cretaceous Basement and the Tertiary Waeup Basin. Fractal dimensions (D) were obtained by using survivor grains which were analysed from six thin sections of the gouges under the optical microscope. The elliptical survivor grains show a shape preferred orientation almost parallel to clay foliation in matrix, suggesting that it was formed by the rotation of the survivor grains in abundant fine-grained matrix during repeated fault slips. The size distributions of the survivor grains follow power-laws with fractal dimensions in the 2.40-3.02 range. D values of all samples but one are higher than a specific D value equal to 2.58 which predicts the self similarity of fragmentation process in constrained comminution model (Sammis et al., 1987), which indicates large fault slip and multiple faulting. Probably the higher D values than 2.58 mean the non-self-similar evolution of cataclastic rocks where fragmentation mechanism changed from constrained comminution to the grain abrasion accompanying selective fracture of larger grains.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Influence of Water on Compression Characteristic of Decomposed Granite Soil Based on Single Particle Crushing Strength (단입자파쇄강도에 기초한 화강풍화토의 압축특성에 미치는 수분의 영향)

  • Ham, Tae-Gew;Kim, Uk-Gie
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.101-109
    • /
    • 2008
  • In order to investigate the influence of the water on compression characteristic of decomposed granite soils, a single particle crushing test and one-dimensional compression tests were carried out on three decomposed granite soils and Silica sand. The initial fracture strength for single particle reduced and variability of the strength increases due to weakening by existing water. Moreover, it was recognized that one-dimensional compression characteristic was related to the initial fracture strength characteristic, and the initial fracture strength also has the effect of weathering.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

Medium Composition Including Particles of Used Rockwool and Wood Affects Growth of Plug Seedlings of Petunia 'Romeo' (폐암면 입자와 목재 입자의 배지 내 혼합 비율이 페튜니아 플러그묘의 생장에 미치는 영향)

  • Kim, Oh-Im;Cho, Ji Young;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • This study was conducted in an effort to meet the need for domestic production of hydroponic media and for medium development using recycled hydroponic rockwool slabs. Two experiments were conducted to evaluate the growth of plug seedlings of petunia 'Romeo' in various mixtures including particles of used rockwool slabs (rockwool particles) and wood chips. In the first experiment, seedlings were grown in plugs filled with mixtures of steam- sterilized rockwool particles and chestnut wood chips, which had been weathered for six months and screened through either 2.8 mm or 5.6 mm sieve, at the mixing ratio of 100:0, 75:25, 50:50, 25:75, or 0:100 (v/v). In the second experiment, seedlings were grown in plugs filled with twenty different mixtures of steam-sterilized particles of used hydroponic rockwool slabs with 4 mm chestnut or pine wood chips, coir, peatmoss, or perlite. In the first experiment seedling growth was not affected by particle size of chestnut wood chips, was superior in the control (commercial plug medium) and in 100% rockwool particles, but was suppressed as mixing ratio of chestnut wood chips increased. In the second experiment, leaf length, and shoot fresh and dry weights were the greatest in rockwool particles+peatmoss+coir treatment, followed by rockwool particles+peatmoss treatment. Leaf length was suppressed as ratio of wood chips increased, especially of chestnut wood chips. Root development was the greatest in rockwool particles+peatmoss+perlite treatment, followed by the control, and rockwool particles+peatmoss+coir treatment. The growth was suppressed as the mixing ratio of rockwool particles, peatmoss, or coir decreased.

  • PDF

A Study on the Compression Characteristics of Decomposed Granite Soil Based on Single Particle Crushing Property (단입자파쇄특성에 기초한 화강풍화토의 압축특성에 관한 연구)

  • 함태규;조용성;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.103-111
    • /
    • 2004
  • There are some problems in evaluating the bearing capacity of decomposed granite soils by general equations on account of their inherent compressibility and crushability. In order to investigate this kind of the engineering characteristics on decomposed granite soils in detail, it is necessary to how the micro property of the single particle composing the granite soils, and then the relevance to the macro characteristics of the soils has to be cleared. The reason why the single particle properties are not studied is first the difficulty to find out some regulating parameters, and secondly little understanding of its significance. Furthermore, the water in the decomposed granite soils accelerates the particle crushing. Consequently, increasing of compressibility and decreasing of shear strength would occur. Actually, when the ground settlement is a big issue in the embanked ground using the decomposed granite soils, the sensitive change of compressibility due to the change of water content in the ground becomes conspicuous. In this study, the single particle strength characteristics are studied and microscopic particle shape analyses are performed. In addition the compressibility of the decomposed granite soils and water content effect on the compressibility are analysed based on the test results.

Experimental Study on the Size Distribution of Fragmentation by Effects of Drilling Pattern and Time Delay Using the Sequential Blasting Machine (천공패턴 및 기폭시차의 변화에 의한 파쇄암의 입도 분포 연구)

  • 이춘우;양형식;송승근
    • Explosives and Blasting
    • /
    • v.18 no.4
    • /
    • pp.43-54
    • /
    • 2000
  • 본 연구에서는 계단식 발파에서 파쇄입도에 영향을 미치는 변수들로부터 대괴를 줄이는 새로운 발파패턴을 제시하고자 하였다. 광주 제2순환도로 대절토 구간에서 천공경, 1회발파공수, 화약의 종류 등의 영향을 파쇄암의 평균입자의 크기와 상위 5개의 대괴 평균치로 나타내었다. 그 결과 대괴의 크기는 평균 파쇄암의 크기와 선형적인 추이를 나타내었으며 평균파쇄도는 저폭속 폭약인ANFO가 NewMITE 보다 좋은 결과를 보였다. 또 천공경 65 mm와 75 mm로 ANFO즉 사용했을 때 파쇄도는 약포의 직경이 작은 경우에 파쇄도가 양호하게 나타났고 총공수와 파쇄도를 살펴본 결과 평균파쇄도와 대괴의 크기는 대제적으로 총공수의 증가에 비례하여 커지는 경향이었으며 평균파쇄도 보다는 대괴의 크기가 증가의 폭이 컸다. 한편 첫째 열을 2단 분리장약했을 때가 일반 발파나 1열 소단벤치발파 때보다 파쇄도가 좋았다.

  • PDF